Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-11T03:30:48.780Z Has data issue: false hasContentIssue false

Ultrafast and nanoscale diodes

Published online by Cambridge University Press:  19 October 2016

Peng Zhang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA
Y. Y. Lau
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA
Rights & Permissions [Opens in a new window]

Abstract

Charge carrier transport across interfaces of dissimilar materials (including vacuum) is the essence of all electronic devices. Ultrafast charge transport across a nanometre length scale is of fundamental importance in the miniaturization of vacuum and plasma electronics. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, achieving superior performance. This paper reviews recent modelling efforts on quantum tunnelling, ultrafast electron emission and transport, and electrical contact resistance. Unsolved problems and challenges in these areas are addressed.

Type
Research Article
Copyright
© Cambridge University Press 2016 

1 Introduction

Diodes, or more generally charge transport phenomena, are central to high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high-energy density physics experiments. One of the great challenges in these areas is the miniaturization of vacuum and plasma electronic devices. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, thus forming highly compact systems with high power handling capability. Applications in ultrafast electron sources, accelerators, and radiation sources, ranging from millimetre wave to X-rays are envisioned (Booske Reference Booske2008; Barletta et al. Reference Barletta, Bisognano, Corlett, Emma, Huang, Kim, Lindberg, Murphy, Neil and Nguyen2010; Booske et al. Reference Booske, Dobbs, Joye, Kory, Neil, Park, Park and Temkin2011; Peralta et al. Reference Peralta, Soong, England, Colby, Wu, Montazeri, McGuinness, McNeur, Leedle and Walz2013; England et al. Reference England, Noble, Bane, Dowell, Ng, Spencer, Tantawi, Wu, Byer and Peralta2014; Hommelhoff & Kling Reference Hommelhoff and Kling2014; Armstrong Reference Armstrong2015).

Since the pioneering work of Spindt (Spindt Reference Spindt1968; Spindt et al. Reference Spindt, Brodie, Humphrey and Westerberg1976) on the fabrication of cathodes using microfabrication technologies, extensive efforts have been made to scale down vacuum electronic devices to the microscale or even nanoscale. Recently, nanoscale vacuum gap has been used as the conducting channel in nanoelectronics (Srisonphan, Jung & Kim Reference Srisonphan, Jung and Kim2012; Stoner & Glass Reference Stoner and Glass2012; Han & Meyyappan Reference Han and Meyyappan2014; Wu et al. Reference Wu, Wei, Gao, Chen and Peng2016). Because of ballistic transport, vacuum is intrinsically a better carrier transport medium compared to a solid, in which the carriers suffer from optical and acoustic phonon scattering, resulting in local heating and degradation in both signal quality and the device itself. The vacuum-solid-state integrated nanodevices thus combine the advantages of ballistic transport through vacuum with the scalability, low cost and reliability of conventional silicon transistor technology.

This paper highlights some recent modelling efforts in the development of ultrafast and nanoscale diodes, including quantum tunnelling current, ultrafast electron emission, and issues in current crowding and contact resistance. Unsolved problems and challenges in these areas are addressed.

2 Quantum tunnelling current

Tunnelling effects in nanoscale metal-insulator (including vacuum)-metal (MIM) junctions were studied extensively by Simmons in the 1960s (Simmons Reference Simmons1963a ,Reference Simmons b ). Simmons’ formulas were derived by considering only the emission process from the electrodes, where the effects of image charge are considered, but the electron space charge potential and the electron exchange-correlation potential inside the insulator thin films are generally ignored. An excellent review on the tunnelling current in MIM structures is given in Kao (Reference Kao2004). The effects of space charge in a vacuum nanogap have subsequently been studied theoretically (Lau et al. Reference Lau, Chernin, Colombant and Ho1991; Ang, Kwan & Lau Reference Ang, Kwan and Lau2003; Ang & Zhang Reference Ang and Zhang2007) and experimentally (Bhattacharjee, Vartak & Mukherjee Reference Bhattacharjee, Vartak and Mukherjee2008; Bhattacharjee & Chowdhury Reference Bhattacharjee and Chowdhury2009).

Recently, a general scaling law for the quantum tunnelling current in nano- and sub-nanoscale MIM diodes has been developed by self-consistently solving the coupled Schrödinger and Poisson equations (Zhang Reference Zhang2015). It includes the effects of space charge and exchange-correlation potential, as well as current emission from the anode. As shown in figure 1, the self-consistent model recovers various scaling laws in limiting cases: Simmons’s formula (Simmons Reference Simmons1963a ) in the direct tunnelling regime, the Fowler–Nordheim law (Fowler & Nordheim Reference Fowler and Nordheim1928) in the field emission regime, and the quantum Child–Langmuir law (Lau et al. Reference Lau, Chernin, Colombant and Ho1991; Ang et al. Reference Ang, Kwan and Lau2003) in the space charge limited (SCL) regime. Note that in the SCL regime, the self-consistent current approaches the quantum version of the Child–Langmuir law, which exceeds the classical Child–Langmuir law (Child Reference Child1911; Langmuir Reference Langmuir1913) because of quantum tunnelling. Smooth transition between various regimes has been demonstrated.

The proposed model may be applied to broad areas involving tunnelling junctions, for example, quantum plasmonics (Esteban et al. Reference Esteban, Borisov, Nordlander and Aizpurua2012; Savage et al. Reference Savage, Hawkeye, Esteban, Borisov, Aizpurua and Baumberg2012), transition voltage spectroscopy (Trouwborst et al. Reference Trouwborst, Martin, Smit, Guédon, Baart, van der Molen and van Ruitenbeek2011; Bâldea Reference Bâldea2012; Sotthewes et al. Reference Sotthewes, Hellenthal, Kumar and Zandvliet2014), molecular electronics (Bâldea & Köppel Reference Bâldea and Köppel2012; Tan et al. Reference Tan, Wu, Yang, Bai, Bosman and Nijhuis2014), and resistive switching (Ziegler, Harnack & Kohlstedt Reference Ziegler, Harnack and Kohlstedt2014).

Further studies on quantum tunnelling current may include: (i) examination of the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation and the free electron gas model assumed for the electrodes against exact first principle calculations (Zhang, Lu & Pantelides Reference Zhang, Lu and Pantelides2006; Yaghoobi, Walus & Nojeh Reference Yaghoobi, Walus and Nojeh2009); (ii) the effects of electrode geometry (Luginsland, Lau & Gilgenbach Reference Luginsland, Lau and Gilgenbach1996; Lau Reference Lau2001; Luginsland et al. Reference Luginsland, Lau, Umstattd and Watrous2002; Rokhlenko & Lebowitz Reference Rokhlenko and Lebowitz2003; Shiffler et al. Reference Shiffler, Statum, Hussey, Zhou and Mardahl2005; Jensen Reference Jensen2010; Tang et al. Reference Tang, Shiffler, Golby, LaCour and Knowles2012; Fairchild et al. Reference Fairchild, Boeckl, Back, Ferguson, Koerner, Murray, Maruyama, Lange, Cahay and Behabtu2015; Harris et al. Reference Harris, Jensen, Shiffler and Petillo2015; Jensen et al. Reference Jensen, Shiffler, Rittersdorf, Lebowitz, Harris, Lau, Petillo, Tang and Luginsland2015); (iii) comparison of the classical image charge potential with that of quantum theory (Newns Reference Newns1969; Koh & Ang Reference Koh and Ang2008; Myöhänen et al. Reference Myöhänen, Tuovinen, Korhonen, Stefanucci and van Leeuwen2012); (iv) the nature of the ion lattice of the electrodes (Spindt et al. Reference Spindt, Brodie, Humphrey and Westerberg1976); (v) dissimilar electrode materials (Simmons Reference Simmons1963b ); (vi) possible charge trapping inside the insulator film (Rose Reference Rose1955; Kao Reference Kao2004); (vii) ac bias and time/frequency dependence (Valfells et al. Reference Valfells, Feldman, Virgo, O’Shea and Lau2002; Feng & Verboncoeur Reference Feng and Verboncoeur2005, Reference Feng and Verboncoeur2006, Reference Feng and Verboncoeur2008; Pedersen, Manolescu and Valfells Reference Pedersen, Manolescu and Valfells2010; Caflisch & Rosin Reference Caflisch and Rosin2012; Cocker et al. Reference Cocker, Jelic, Gupta, Molesky, Burgess, Reyes, Titova, Tsui, Freeman and Hegmann2013; Griswold, Fisch & Wurtele Reference Griswold, Fisch and Wurtele2012; Rokhlenko Reference Rokhlenko2015; Liu et al. Reference Liu, Zhang, Chen and Ang2015a ,Reference Liu, Zhang, Chen and Ang b ; Griswold & Fisch Reference Griswold and Fisch2016); and (viii) comparison of theory and modelling with experiments (Spindt et al. Reference Spindt, Brodie, Humphrey and Westerberg1976; Das & Jagadeesh Reference Das and Jagadeesh1981; Teague Reference Teague1986; Cahay et al. Reference Cahay, McLennan, Datta and Lundstrom1987; Bhattacharjee et al. Reference Bhattacharjee, Vartak and Mukherjee2008; Bhattacharjee & Chowdhury Reference Bhattacharjee and Chowdhury2009; Bormann et al. Reference Bormann, Gulde, Weismann, Yalunin and Ropers2010; Cocker et al. Reference Cocker, Jelic, Gupta, Molesky, Burgess, Reyes, Titova, Tsui, Freeman and Hegmann2013; Tan et al. Reference Tan, Wu, Yang, Bai, Bosman and Nijhuis2014). These studies are important to vacuum nanoelectronics, including gated vacuum nanodevices (Han, Oh & Meyyappan Reference Han, Oh and Meyyappan2012), transition voltage spectroscopy in vacuum diodes (Bâldea Reference Bâldea2014) and non-equilibrium vacuum tunnelling junctions (Maksymovych Reference Maksymovych2013).

Figure 1. Self-consistent model for the quantum tunnelling current in a one-dimensional planar nanoscale Au-vaccum-Au diode (Zhang Reference Zhang2015). The gap distance is $D=1~\text{nm}$ , gap voltage is $V_{g}$ and the normalized current density $\unicode[STIX]{x1D6FE}=J/J_{CL}$ is in terms of the Child–Langmuir law $J_{CL}$ . The $J$ -V (current density–voltage) curve is compared with scaling laws in various limits: Simmons formula (Simmons Reference Simmons1963a ), Fowler–Nordheim (FN) law (Fowler & Nordheim Reference Fowler and Nordheim1928), Child–Langmuir (CL) law (Child Reference Child1911; Langmuir Reference Langmuir1913) and quantum CL law (Lau et al. Reference Lau, Chernin, Colombant and Ho1991; Ang et al. Reference Ang, Kwan and Lau2003).

3 Ultrafast electron emission

Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron dynamics in ultrashort spatio-temporal scales (Hommelhoff & Kling Reference Hommelhoff and Kling2014). Production of ultrashort electron bunches provides the enabling technology for four-dimensional (4-D) time-resolved electron microscopy (Tao et al. Reference Tao, Zhang, Duxbury, Berz and Ruan2012; Portman et al. Reference Portman, Zhang, Tao, Makino, Berz, Duxbury and Ruan2013). It is also important to free electron lasers, laser acceleration of relativistic electrons, and ultrafast electron diffraction (Hommelhoff, Kealhofer & Kasevich Reference Hommelhoff, Kealhofer and Kasevich2006; Ropers et al. Reference Ropers, Solli, Schulz, Lienau and Elsaesser2007). Perturbative theory to model laser-driven ultrafast electron emission was usually done with the strong field approximation (Bormann et al. Reference Bormann, Gulde, Weismann, Yalunin and Ropers2010). Existing Floquet models for electron emission include only a laser wave field with zero direct current (dc) bias (Yalunin, Gulde & Ropers Reference Yalunin, Gulde and Ropers2011).

We constructed an analytic solution for the highly nonlinear electron emission from a metal surface that is exposed to both a dc biased electric field and a single frequency laser electric field (Zhang & Lau Reference Zhang and Lau2016). By solving the time-dependent Schrödinger equation exactly, our theory is valid for arbitrary laser frequency and metal properties (work function and Fermi level). Various emission mechanisms, including multiphoton absorption or emission, optical or dc field emission, single-photon induced over-barrier emission, and various combinations of these, are all included in a single formulation. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by only increasing the applied dc bias, as shown in figure 2. A slowly varying envelope approximation has extended the results to pulsed excitation (Zhang & Lau Reference Zhang and Lau2016).

Figure 2. Time-dependent total emission current density $w$ ( $x$ , $t$ ) normalized to the time-averaged emission current density ${<}w>$ , as a function of time $t$ and space $x$ , for laser electric field $F_{\text{1}}=1~\text{V}~\text{nm}^{-1}$ under three dc fields $F_{0}=1,5,10~\text{V}~\text{nm}^{-1}$ (Zhang & Lau Reference Zhang and Lau2016). Time is normalized to the laser period $2\unicode[STIX]{x03C0}/\unicode[STIX]{x1D714}$ , and space is normalized to a length scale $\sqrt{\hslash ^{2}/2mW}$ , where $\unicode[STIX]{x1D714}$ is the laser frequency, $m$ is the electron rest mass and $W$ is the metal work function. We assumed the metal is gold, with $W=5.1~\text{eV}$ , Fermi level $E_{F}=5.53~\text{eV}$ and laser wavelength $\unicode[STIX]{x1D706}=800~\text{nm}$ . The vacuum–metal interface is located at $x=0$ .

Future studies on ultrafast electron emission may include emission delay and scattered electron contributions, charge redistribution and thermalization (Pant & Ang Reference Pant and Ang2013), field enhancement (Feng & Verboncoeur Reference Feng and Verboncoeur2005, Reference Feng and Verboncoeur2006, Reference Feng and Verboncoeur2008; Miller, Lau & Booske Reference Miller, Lau and Booske2007; Feng, Verboncoeur & Lin Reference Feng, Verboncoeur and Lin2008; Jensen et al. Reference Jensen, Lau, Feldman and O’Shea2008; Tang, Shiffler & Cartwright Reference Tang, Shiffler and Cartwright2011) and space charge effects (Griswold, Fisch & Wurtele Reference Griswold, Fisch and Wurtele2010; Pedersen et al. Reference Pedersen, Manolescu and Valfells2010; Caflisch & Rosin Reference Caflisch and Rosin2012; Griswold et al. Reference Griswold, Fisch and Wurtele2012; Ilkov et al. Reference Ilkov, Torfason, Manolescu and Valfells2015; Rokhlenko Reference Rokhlenko2015; Liu et al. Reference Liu, Zhang, Chen and Ang2015a ,Reference Liu, Zhang, Chen and Ang b ; Griswold & Fisch Reference Griswold and Fisch2016), all under ultrafast conditions. It is important to link ultrafast strong-field laser physics in atoms and gaseous media to that in nanoclusters, solid-state surfaces and nanostructures (Corkum et al. Reference Corkum, Brunel, Sherman and Srinivasan-Rao1988; Corkum Reference Corkum1993; Corkum, Burnett & Ivanov Reference Corkum, Burnett and Ivanov1994; Rundquist et al. Reference Rundquist, Durfee, Chang, Herne, Backus, Murnane and Kapteyn1998; Corkum & Krausz Reference Corkum and Krausz2007; Fan et al. Reference Fan, Grychtol, Knut, Hernández-García, Hickstein, Zusin, Gentry, Dollar, Mancuso and Hogle2015; Chen et al. Reference Chen, Tao, Hernández-García, Matyba, Carr, Knut, Kfir, Zusin, Gentry and Grychtol2016; Tao et al. Reference Tao, Chen, Szilvási, Keller, Mavrikakis, Kapteyn and Murnane2016). These studies would offer unprecedented scientific advances in attosecond science (Corkum & Krausz Reference Corkum and Krausz2007; Hommelhoff & Kling Reference Hommelhoff and Kling2014; Tao et al. Reference Tao, Chen, Szilvási, Keller, Mavrikakis, Kapteyn and Murnane2016).

4 Current crowding and contact resistance

Contact resistance and current crowding are very important to plasma and vacuum electronics, such as wire array $z$ -pinches (Gomez et al. Reference Gomez, Zier, Gilgenbach, French, Tang and Lau2008; Zier et al. Reference Zier, Gomez, French, Gilgenbach, Lau, Tang, Cuneo, Mehlhorn, Johnston and Mazarakis2008), field emitters (Shiffler et al. Reference Shiffler, Statum, Hussey, Zhou and Mardahl2005; Park et al. Reference Park, Cola, Siegmund, Xu, Maschmann, Fisher and Kim2006; Vlahos, Booske & Morgan Reference Vlahos, Booske and Morgan2007) and high power microwave devices (Booske Reference Booske2008; Benford, Swegle & Schamiloglu Reference Benford, Swegle and Schamiloglu2015). In these systems, poor electrical contact prevents efficient power coupling to the load, produces unwanted plasma and even damages the electrodes. Contact resistance is also extremely important in wafer evaluation (Carbonero, Morin & Cabon Reference Carbonero, Morin and Cabon1995), thin film resistors (Hall Reference Hall1968) and metal-oxide–vacuum junctions (Latham Reference Latham1995). It is critical to semiconductor material and device characterization (Berger Reference Berger1972; Schroder Reference Schroder1998). Contact resistance is one of the major limiting factors to devices made of exceptional materials, such as carbon nanotubes (CNTs), graphene and diamond (Li, Thostenson & Chou Reference Li, Thostenson and Chou2007; Grotjohn et al. Reference Grotjohn, Tran, Yaran, Demlow and Schuelke2014; Nouchi & Tanigaki Reference Nouchi and Tanigaki2014).

The fundamental model of electrical contact, Holm’s $a$ -spot theory (Holm Reference Holm1967; Schroder Reference Schroder1998; Timsit Reference Timsit1999; Chin, Barber & Hu Reference Chin, Barber and Hu2006), is generalized to include the effects of dissimilar materials and higher dimensions (Gomez et al. Reference Gomez, French, Tang, Zhang, Lau and Gilgenbach2009; Lau & Tang Reference Lau and Tang2009; Zhang & Lau Reference Zhang and Lau2010; Zhang Reference Zhang2012). By using Fourier series analysis, we derived new, simple analytical scaling laws for the total resistance for arbitrary values of dimensions and resistivities, for both Cartesian and cylindrical geometries (Zhang & Lau Reference Zhang and Lau2010). The models are extended to thin film contacts for two basic configurations: the horizontal type (figure 3 a) (Zhang, Lau & Gilgenbach Reference Zhang, Lau and Gilgenbach2011; Zhang, Lau & Timsit Reference Zhang, Lau and Timsit2012; Zhang, Hung & Lau Reference Zhang, Hung and Lau2013; Zhang & Lau Reference Zhang and Lau2014) and the vertical type (figure 3 b) (Zhang & Lau Reference Zhang and Lau2013). Current crowding is systematically studied by calculating the current flow patterns (Zhang, Lau & Gilgenbach Reference Zhang, Lau and Gilgenbach2015a ). The exact field solution accounts for both interface resistance and spreading resistance. It was recently applied to study current crowding and constriction resistance in electrically pumped nanolasers, where the effects of sidewall tilt were analysed (Zhang et al. Reference Zhang, Gu, Lau and Fainman2016).

Figure 3. Two basic types of thin film contact: (a) the horizontal type (Zhang et al. Reference Zhang, Lau and Gilgenbach2011, Reference Zhang, Lau and Timsit2012, Reference Zhang, Hung and Lau2013; Zhang & Lau Reference Zhang and Lau2014) and (b) the vertical type (Zhang & Lau Reference Zhang and Lau2013).

When electrical contacts are formed in micro- or nanoscale, the electron mean free path $l$ may exceed the contact size $a$ , so that electrons transport ballistically through the contact constriction (Sharvin Reference Sharvin1965; Landauer Reference Landauer1996; Zhang & Hung Reference Zhang and Hung2014). If the system size is further reduced to be of the order of the Fermi wavelength, wave character features would be pronounced, where the quantization of ballistic electron transport through a constriction represents conduction as transmission. There are existing models of electrical contacts in ballistic (Sharvin Reference Sharvin1965; Büttiker Reference Büttiker1988; Datta & Anantram Reference Datta and Anantram1992; Landauer Reference Landauer1996) and quantum regimes (Mortensen et al. Reference Mortensen, Johnsen, Jauho and Flensberg1999; Datta Reference Datta2005; Grosse et al. Reference Grosse, Bae, Lian, Pop and King2011; Solomon Reference Solomon2011; Xia et al. Reference Xia, Perebeinos, Lin, Wu and Avouris2011). However, the transition between the classical, ballistic and quantum regimes remains unclear, and it requires further investigation. The underlying physics in these regimes is critical to the design and performance of the multitude of new devices that are expected to be developed in the near future.

5 Concluding remarks

Ultrafast and nanoscale diodes are essential components in the miniaturization of plasma and vacuum electronics, as recognized in a recent white paper for the US Department of Energy (Zhang et al. Reference Zhang, Luginsland, Lau, Booske, Gilgenbach, Jensen, Peckerar, Shiffler, Fairchild and Verboncoeur2015b ). Here, we review recent modelling efforts on three aspects of nanoscale diodes, quantum tunnelling, ultrafast electron emission and electrical contact. Unsolved problems and challenges in these areas are addressed.

The research outlined above is pushing the traditional boundary of plasma science and engineering, into neighbouring fields of nanoelectronics, ultrafast physics and material science. The applications of these research are immense, including single-molecule sensing, transition voltage spectroscopy, molecule electronics, resistive switching, CNT-, graphene- and diamond-based electronics, novel high brightness electron sources, ultrafast electron microscopes, variable stoichiometry photoemissive materials for detectors and sources, and novel compact particle accelerators.

Acknowledgements

This work was supported by AFOSR grant no. FA9550-14-1-0309. P.Z. was also supported by AFOSR through a subcontract from the University of Michigan.

References

Ang, L. K., Kwan, T. J. T. & Lau, Y. Y. 2003 New scaling of Child–Langmuir law in the quantum regime. Phys. Rev. Lett. 91 (20), 208303.Google Scholar
Ang, L. K. & Zhang, P. 2007 Ultrashort-pulse Child–Langmuir law in the quantum and relativistic regimes. Phys. Rev. Lett. 98 (16), 164802.Google Scholar
Armstrong, C. M. 2015 The quest for the ultimate vacuum tube. In IEEE Spectrum: Technology, Engineering, and Science News 24 November 2015, http://spectrum.ieee.org/semiconductors/ devices/the-quest-for-the-ultimate-vacuum-tube.Google Scholar
Bâldea, I. 2012 Transition voltage spectroscopy in vacuum break junction: possible role of surface states. Europhys. Lett. 98 (1), 17010.Google Scholar
Bâldea, I. 2014 Concurrent conductance and transition voltage spectroscopy study of scanning tunneling microscopy vacuum junctions. Does it unravel new physics? RSC Advances 4 (63), 3325733261.Google Scholar
Bâldea, I. & Köppel, H. 2012 Evidence on single-molecule transport in electrostatically-gated molecular transistors. Phys. Lett. A 376 (17), 14721476.Google Scholar
Barletta, W. A., Bisognano, J., Corlett, J. N., Emma, P., Huang, Z., Kim, K.-J., Lindberg, R., Murphy, J. B., Neil, G. R., Nguyen, D. C. et al. 2010 Free electron lasers: present status and future challenges. Nucl. Instrum. Meth. A 618 (1–3), 6996.Google Scholar
Benford, J., Swegle, J. A. & Schamiloglu, E. 2015 High Power Microwaves, 3rd edn. CRC Press.Google Scholar
Berger, H. H. 1972 Models for contacts to planar devices. Solid-State Electron. 15 (2), 145158.Google Scholar
Bhattacharjee, S. & Chowdhury, T. 2009 Experimental investigation of transition from Fowler–Nordheim field emission to space-charge-limited flows in a nanogap. Appl. Phys. Lett. 95 (6), 61501.Google Scholar
Bhattacharjee, S., Vartak, A. & Mukherjee, V. 2008 Experimental study of space-charge-limited flows in a nanogap. Appl. Phys. Lett. 92 (19), 191503.Google Scholar
Booske, J. H. 2008 Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa. Phys. Plasmas 15 (5), 55502.Google Scholar
Booske, J. H., Dobbs, R. J., Joye, C. D., Kory, C. L., Neil, G. R., Park, G.-S., Park, J. & Temkin, R. J. 2011 Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 1 (1), 5475.Google Scholar
Bormann, R., Gulde, M., Weismann, A., Yalunin, S. V. & Ropers, C. 2010 Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105 (14), 147601.Google Scholar
Büttiker, M. 1988 Symmetry of electrical conduction. IBM J. Res. Dev. 32 (3), 317334.CrossRefGoogle Scholar
Caflisch, R. E. & Rosin, M. S. 2012 Beyond the Child–Langmuir limit. Phys. Rev. E 85 (5), 56408.Google Scholar
Cahay, M., McLennan, M., Datta, S. & Lundstrom, M. S. 1987 Importance of space-charge effects in resonant tunneling devices. Appl. Phys. Lett. 50 (10), 612614.Google Scholar
Carbonero, J. L., Morin, G. & Cabon, B. 1995 Comparison between beryllium-copper and tungsten high frequency air coplanar probes. IEEE Trans. Microw. Theory Technol. 43 (12), 27862793.Google Scholar
Chen, C., Tao, Z., Hernández-García, C., Matyba, P., Carr, A., Knut, R., Kfir, O., Zusin, D., Gentry, C., Grychtol, P. et al. 2016 Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology. Sci. Adv. 2 (2), e1501333.Google Scholar
Child, C. D. 1911 Discharge from hot CaO. Phys. Rev. Ser. I 32 (5), 492511.Google Scholar
Chin, M., Barber, J. R. & Hu, S. J. 2006 Effect of elastic recovery on the electrical contact resistance in anisotropic conductive adhesive assemblies. IEEE Trans. Compon. Packag. Technol. 29 (1), 137144.Google Scholar
Cocker, T. L., Jelic, V., Gupta, M., Molesky, S. J., Burgess, J. A. J., Reyes, G. D. L., Titova, L. V., Tsui, Y. Y., Freeman, M. R. & Hegmann, F. A. 2013 An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7 (8), 620625.Google Scholar
Corkum, P. B. 1993 Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71 (13), 19941997.Google Scholar
Corkum, P. B., Brunel, F., Sherman, N. K. & Srinivasan-Rao, T. 1988 Thermal response of metals to ultrashort-pulse laser excitation. Phys. Rev. Lett. 61 (25), 28862889.Google Scholar
Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. 1994 Subfemtosecond pulses. Opt. Lett. 19 (22), 18701872.Google Scholar
Corkum, P. B. & Krausz, F. 2007 Attosecond science. Nat. Phys. 3 (6), 381387.Google Scholar
Das, V. D. & Jagadeesh, M. S. 1981 Tunneling in $\text{Al}{-}\text{Al}_{2}\text{O}_{3}$ –Al MIM structures. Phys. Stat. Solid. A 66 (1), 327333.Google Scholar
Datta, S. 2005 Quantum Transport: Atom to Transistor, 2nd edn. Cambridge University Press.Google Scholar
Datta, S. & Anantram, M. P. 1992 Steady-state transport in mesoscopic systems illuminated by alternating fields. Phys. Rev. B 45 (23), 1376113764.Google Scholar
England, R. J., Noble, R. J., Bane, K., Dowell, D. H., Ng, C.-K., Spencer, J. E., Tantawi, S., Wu, Z., Byer, R. L., Peralta, E. et al. 2014 Dielectric laser accelerators. Rev. Mod. Phys. 86 (4), 13371389.Google Scholar
Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. 2012 Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825.Google Scholar
Fairchild, S. B., Boeckl, J., Back, T. C., Ferguson, J. B., Koerner, H., Murray, P. T., Maruyama, B., Lange, M. A., Cahay, M. M., Behabtu, N. et al. 2015 Morphology dependent field emission of acid-spun carbon nanotube fibers. Nanotechnology 26 (10), 105706.Google Scholar
Fan, T., Grychtol, P., Knut, R., Hernández-García, C., Hickstein, D. D., Zusin, D., Gentry, C., Dollar, F. J., Mancuso, C. A., Hogle, C. W. et al. 2015 Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proc. Natl Acad. Sci. 112 (46), 1420614211.Google Scholar
Feng, Y. & Verboncoeur, J. P. 2005 A model for effective field enhancement for Fowler–Nordheim field emission. Phys. Plasmas 12 (10), 103301.Google Scholar
Feng, Y. & Verboncoeur, J. P. 2006 Transition from Fowler–Nordheim field emission to space charge limited current density. Phys. Plasmas 13 (7), 73105.Google Scholar
Feng, Y. & Verboncoeur, J. P. 2008 Consistent solution for space-charge-limited current in the relativistic regime for monoenergetic initial velocities. Phys. Plasmas 15 (11), 112101.Google Scholar
Feng, Y., Verboncoeur, J. P. & Lin, M. C. 2008 Solution for space charge limited field emission current densities with injection velocity and geometric effects corrections. Phys. Plasmas 15 (4), 43301.Google Scholar
Fowler, R. H. & Nordheim, L. 1928 Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119 (781), 173181.Google Scholar
Gomez, M. R., French, D. M., Tang, W., Zhang, P., Lau, Y. Y. & Gilgenbach, R. M. 2009 Experimental validation of a higher dimensional theory of electrical contact resistance. Appl. Phys. Lett. 95 (7), 72103.Google Scholar
Gomez, M. R., Zier, J. C., Gilgenbach, R. M., French, D. M., Tang, W. & Lau, Y. Y. 2008 Effect of soft metal gasket contacts on contact resistance, energy deposition, and plasma expansion profile in a wire array Z pinch. Rev. Sci. Instrum. 79 (9), 93512.Google Scholar
Griswold, M. E. & Fisch, N. J. 2016 Maximum time-dependent space-charge limited diode currents. Phys. Plasmas 23 (1), 14502.Google Scholar
Griswold, M. E., Fisch, N. J. & Wurtele, J. S. 2010 An upper bound to time-averaged space-charge limited diode currents. Phys. Plasmas 17 (11), 114503.Google Scholar
Griswold, M. E., Fisch, N. J. & Wurtele, J. S. 2012 Amended conjecture on an upper bound to time-dependent space-charge limited current. Phys. Plasmas 19 (2), 24502.CrossRefGoogle Scholar
Grosse, K. L., Bae, M.-H., Lian, F., Pop, E. & King, W. P. 2011 Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 6 (5), 287290.Google Scholar
Grotjohn, T. A., Tran, D. T., Yaran, M. K., Demlow, S. N. & Schuelke, T. 2014 Heavy phosphorus doping by epitaxial growth on the (111) diamond surface. Diamond Relat. Mater. 44, 129133.Google Scholar
Hall, P. M. 1968 Resistance calculations for thin film patterns. Thin Solid Films 1 (4), 277295.Google Scholar
Han, J. W. & Meyyappan, M. 2014 Introducing the Vacuum Transistor: A Device Made of Nothing, 23 June, 2014; http://spectrum.ieee.org/semiconductors/devices/introducing-the-vacuum-transistor-a-device-made-of-nothing.Google Scholar
Han, J.-W., Oh, J. S. & Meyyappan, M. 2012 Vacuum nanoelectronics: back to the future? – Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100 (21), 213505.Google Scholar
Harris, J. R., Jensen, K. L., Shiffler, D. A. & Petillo, J. J. 2015 Shielding in ungated field emitter arrays. Appl. Phys. Lett. 106 (20), 201603.Google Scholar
Holm, R. 1967 Electric Contacts: Theory and Application, 4th edn. Springer.Google Scholar
Hommelhoff, P., Kealhofer, C. & Kasevich, M. A. 2006 Ultrafast electron pulses from a Tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97 (24), 247402.Google Scholar
Hommelhoff, P. & Kling, M.(Eds) 2014 Attosecond Nanophysics: From Basic Science to Applications, 1 edn. Wiley-VCH.Google Scholar
Ilkov, M., Torfason, K., Manolescu, A. & Valfells, Á. 2015 Terahertz pulsed photogenerated current in microdiodes at room temperature. Appl. Phys. Lett. 107 (20), 203508.Google Scholar
Jensen, K. L. 2010 Space charge effects in field emission: three dimensional theory. J. Appl. Phys. 107 (1), 14905.Google Scholar
Jensen, K. L., Lau, Y. Y., Feldman, D. W. & O’Shea, P. G. 2008 Electron emission contributions to dark current and its relation to microscopic field enhancement and heating in accelerator structures. Phys. Rev. Special Top. Accel. Beams 11 (8), 81001.Google Scholar
Jensen, K. L., Shiffler, D. A., Rittersdorf, I. M., Lebowitz, J. L., Harris, J. R., Lau, Y. Y., Petillo, J. J., Tang, W. & Luginsland, J. W. 2015 Discrete space charge affected field emission: flat and hemisphere emitters. J. Appl. Phys. 117 (19), 194902.Google Scholar
Kao, K. C. 2004 Dielectric Phenomena in Solids, 1 edn. Academic.Google Scholar
Koh, W. S. & Ang, L. K. 2008 Quantum model of space–charge-limited field emission in a nanogap. Nanotechnology 19 (23), 235402.Google Scholar
Landauer, R. 1996 Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment). J. Math. Phys. 37 (10), 52595268.Google Scholar
Langmuir, I. 1913 The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 2 (6), 450486.Google Scholar
Latham, R. V. 1995 High Voltage Vacuum Insulation: Basic Concepts and Technological Practice, 1 edn. Academic.Google Scholar
Lau, Y. Y. 2001 Simple theory for the two-dimensional Child–Langmuir law. Phys. Rev. Lett. 87 (27), 278301.Google Scholar
Lau, Y. Y., Chernin, D., Colombant, D. G. & Ho, P.-T. 1991 Quantum extension of Child–Langmuir law. Phys. Rev. Lett. 66 (11), 14461449.Google Scholar
Lau, Y. Y. & Tang, W. 2009 A higher dimensional theory of electrical contact resistance. J. Appl. Phys. 105 (12), 124902.CrossRefGoogle Scholar
Li, C., Thostenson, E. T. & Chou, T.-W. 2007 Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 91 (22), 223114.Google Scholar
Liu, Y. L., Zhang, P., Chen, S. H. & Ang, L. K. 2015a Maximal charge injection of consecutive electron pulses with uniform temporal pulse separation. Phys. Plasmas 22 (8), 84504.Google Scholar
Liu, Y. L., Zhang, P., Chen, S. H. & Ang, L. K. 2015b Maximal charge injection of a uniform separated electron pulse train in a drift space. Phys. Rev. Special Top. Accel. Beams 18 (12), 123402.Google Scholar
Luginsland, J. W., Lau, Y. Y. & Gilgenbach, R. M. 1996 Two-dimensional Child–Langmuir law. Phys. Rev. Lett. 77, 4668.Google Scholar
Luginsland, J. W., Lau, Y. Y., Umstattd, R. J. & Watrous, J. J. 2002 Beyond the Child–Langmuir law: a review of recent results on multidimensional space-charge-limited flow. Phys. Plasmas 9 (5), 23712376.Google Scholar
Maksymovych, P. 2013 Distance dependence of tunneling thermovoltage on metal surfaces. J. Vacuum Sci. Technol. B 31 (3), 31804.Google Scholar
Miller, R., Lau, Y. Y. & Booske, J. H. 2007 Electric field distribution on knife-edge field emitters. Appl. Phys. Lett. 91 (7), 74105.Google Scholar
Mortensen, N. A., Johnsen, K., Jauho, A.-P. & Flensberg, K. 1999 Contact resistance of quantum tubes. Superlatt. Microstruct. 26 (6), 351361.Google Scholar
Myöhänen, P., Tuovinen, R., Korhonen, T., Stefanucci, G. & van Leeuwen, R. 2012 Image charge dynamics in time-dependent quantum transport. Phys. Rev. B 85 (7), 75105.Google Scholar
Newns, D. M. 1969 Fermi–Thomas response of a metal surface to an external point charge. J. Chem. Phys. 50 (10), 45724575.Google Scholar
Nouchi, R. & Tanigaki, K. 2014 Path of the current flow at the metal contacts of graphene field-effect transistors with distorted transfer characteristics. Appl. Phys. Lett. 105 (3), 33112.Google Scholar
Pant, M. & Ang, L. K. 2013 Time-dependent quantum tunneling and nonequilibrium heating model for the generalized Einstein photoelectric effect. Phys. Rev. B 88 (19), 195434.Google Scholar
Park, M., Cola, B. A., Siegmund, T., Xu, J., Maschmann, M. R., Fisher, T. S. & Kim, H. 2006 Effects of a carbon nanotube layer on electrical contact resistance between copper substrates. Nanotechnology 17 (9), 2294.Google Scholar
Pedersen, A., Manolescu, A. & Valfells, Á. 2010 Space-charge modulation in vacuum microdiodes at THz frequencies. Phys. Rev. Lett. 104 (17), 175002.Google Scholar
Peralta, E. A., Soong, K., England, R. J., Colby, E. R., Wu, Z., Montazeri, B., McGuinness, C., McNeur, J., Leedle, K. J., Walz, D. et al. 2013 Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503 (7474), 9194.Google Scholar
Portman, J., Zhang, H., Tao, Z., Makino, K., Berz, M., Duxbury, P. M. & Ruan, C.-Y. 2013 Computational and experimental characterization of high-brightness beams for femtosecond electron imaging and spectroscopy. Appl. Phys. Lett. 103 (25), 253115.Google Scholar
Rokhlenko, A. 2015 Child–Langmuir flow with periodically varying anode voltage. Phys. Plasmas 22 (2), 22126.Google Scholar
Rokhlenko, A. & Lebowitz, J. L. 2003 Space-charge-limited 2D electron flow between two flat electrodes in a strong magnetic field. Phys. Rev. Lett. 91 (8), 85002.Google Scholar
Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. 2007 Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98 (4), 43907.Google Scholar
Rose, A. 1955 Space-charge-limited currents in solids. Phys. Rev. 97 (6), 15381544.Google Scholar
Rundquist, A., Durfee, C. G., Chang, Z., Herne, C., Backus, S., Murnane, M. M. & Kapteyn, H. C. 1998 Phase-matched generation of coherent soft x-rays. Science 280 (5368), 14121415.Google Scholar
Savage, K. J., Hawkeye, M. M., Esteban, R., Borisov, A. G., Aizpurua, J. & Baumberg, J. J. 2012 Revealing the quantum regime in tunnelling plasmonics. Nature 491 (7425), 574577.Google Scholar
Schroder, D. K. 1998 Semiconductor Material and Device Characterization, 2nd edn. Wiley-Blackwell.Google Scholar
Sharvin, Y. V. 1965 A possible method for studying Fermi surfaces. Sov. Phys.-JETP 21, 655.Google Scholar
Shiffler, D., Statum, T. K., Hussey, T. W., Zhou, O. & Mardahl, P. 2005 High-power microwave sources. In Modern Microwave and Millimeter Wave Power Electronics, p. 691. IEEE.Google Scholar
Simmons, J. G. 1963a Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34 (6), 17931803.Google Scholar
Simmons, J. G. 1963b Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34 (9), 25812590.Google Scholar
Solomon, P. M. 2011 Contact resistance to a one-dimensional quasi-ballistic nanotube/wire. IEEE Electron Device Lett. 32 (3), 246248.Google Scholar
Sotthewes, K., Hellenthal, C., Kumar, A. & Zandvliet, H. J. W. 2014 Transition voltage spectroscopy of scanning tunneling microscopy vacuum junctions. RSC Advances 4 (61), 3243832442.Google Scholar
Spindt, C. A. 1968 A thin-film field-emission cathode. J. Appl. Phys. 39 (7), 35043505.Google Scholar
Spindt, C. A., Brodie, I., Humphrey, L. & Westerberg, E. R. 1976 Physical properties of thin-film field emission cathodes with molybdenum cones. J. Appl. Phys. 47 (12), 52485263.Google Scholar
Srisonphan, S., Jung, Y. S. & Kim, H. K. 2012 Metal-oxide-semiconductor field-effect transistor with a vacuum channel. Nat. Nanotechnol. 7 (8), 504508.Google Scholar
Stoner, B. R. & Glass, J. T. 2012 Nanoelectronics: nothing is like a vacuum. Nat. Nanotechnol. 7 (8), 485487.Google Scholar
Tan, S. F., Wu, L., Yang, J. K. W., Bai, P., Bosman, M. & Nijhuis, C. A. 2014 Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343 (6178), 14961499.Google Scholar
Tang, W., Shiffler, D. & Cartwright, K. L. 2011 Analysis of electric field screening by the proximity of two knife-edge field emitters. J. Appl. Phys. 110 (3), 34905.Google Scholar
Tang, W., Shiffler, D., Golby, K., LaCour, M. & Knowles, T. 2012 Experimental study of electric field screening by the proximity of two carbon fiber cathodes. J. Vacuum Sci. Technol. B 30 (6), 61803.Google Scholar
Tao, Z., Chen, C., Szilvási, T., Keller, M., Mavrikakis, M., Kapteyn, H. & Murnane, M. 2016 Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353 (6294), 6267.Google Scholar
Tao, Z., Zhang, H., Duxbury, P. M., Berz, M. & Ruan, C.-Y. 2012 Space charge effects in ultrafast electron diffraction and imaging. J. Appl. Phys. 111 (4), 44316.Google Scholar
Teague, E. C. 1986 Room temperature gold-vacuum-gold tunneling experiments. J. Res. Natl Bur. Stand. 91 (4), 171233.Google Scholar
Timsit, R. S. 1999 Electrical contact resistance: properties of stationary interfaces. IEEE Trans. Compon. Packag. Technol. 22 (1), 8598.Google Scholar
Trouwborst, M. L., Martin, C. A., Smit, R. H. M., Guédon, C. M., Baart, T. A., van der Molen, S. J. & van Ruitenbeek, J. M. 2011 Transition voltage spectroscopy and the nature of vacuum tunneling. Nano Lett. 11 (2), 614617.Google Scholar
Valfells, Á., Feldman, D. W., Virgo, M., O’Shea, P. G. & Lau, Y. Y. 2002 Effects of pulse-length and emitter area on virtual cathode formation in electron guns. Phys. Plasmas 9 (5), 23772382.Google Scholar
Vlahos, V., Booske, J. H. & Morgan, D. 2007 Ab initio study of the effects of thin CsI coatings on the work function of graphite cathodes. Appl. Phys. Lett. 91 (14), 144102.Google Scholar
Wu, G., Wei, X., Gao, S., Chen, Q. & Peng, L. 2016 Tunable graphene micro-emitters with fast temporal response and controllable electron emission. Nat. Commun. 7, 11513.Google Scholar
Xia, F., Perebeinos, V., Lin, Y., Wu, Y. & Avouris, P. 2011 The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6 (3), 179184.Google Scholar
Yaghoobi, P., Walus, K. & Nojeh, A. 2009 First-principles study of quantum tunneling from nanostructures: Current in a single-walled carbon nanotube electron source. Phys. Rev. B 80 (11), 115422.Google Scholar
Yalunin, S. V., Gulde, M. & Ropers, C. 2011 Strong-field photoemission from surfaces: theoretical approaches. Phys. Rev. B 84 (19), 195426.Google Scholar
Zhang, P.2012 Effects of surface roughness on electrical contact, RF heating and field enhancement. PhD thesis, The Unviersity of Michigan, Ann Arbor.Google Scholar
Zhang, P. 2015 Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions. Scientific Rep. 5, 9826.Google Scholar
Zhang, P., Gu, Q., Lau, Y. Y. & Fainman, Y. 2016 Constriction resistance and current crowding in electrically pumped semiconductor nanolasers with the presence of undercut and sidewall tilt. IEEE J. Quantum Electron. 52 (3), 2000207.Google Scholar
Zhang, P. & Hung, D. M. H. 2014 An analytical model for ballistic diode based on asymmetric geometry. J. Appl. Phys. 115 (20), 204908.Google Scholar
Zhang, P., Hung, D. M. H. & Lau, Y. Y. 2013 Current flow in a 3-terminal thin film contact with dissimilar materials and general geometric aspect ratios. J. Phys. D: Appl. Phys. 46 (6), 65502.Google Scholar
Zhang, P. & Lau, Y. Y. 2010 Scaling laws for electrical contact resistance with dissimilar materials. J. Appl. Phys. 108 (4), 44914.Google Scholar
Zhang, P. & Lau, Y. Y. 2013 Constriction resistance and current crowding in vertical thin film contact. IEEE J. Electron Devices Soc. 1 (3), 8390.Google Scholar
Zhang, P. & Lau, Y. Y. 2014 An exact field solution of contact resistance and comparison with the transmission line model. Appl. Phys. Lett. 104 (20), 204102.Google Scholar
Zhang, P. & Lau, Y. Y. 2016 Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger equation. Scientific Rep. 6, 19894.Google Scholar
Zhang, P., Lau, Y. Y. & Gilgenbach, R. M. 2011 Thin film contact resistance with dissimilar materials. J. Appl. Phys. 109 (12), 124910.Google Scholar
Zhang, P., Lau, Y. Y. & Timsit, R. S. 2012 On the spreading resistance of thin-film contacts. IEEE Trans. Electron Devices 59 (7), 19361940.Google Scholar
Zhang, P., Lau, Y. Y. & Gilgenbach, R. M. 2015a Analysis of current crowding in thin film contacts from exact field solution. J. Phys. D: Appl. Phys. 48 (47), 475501.Google Scholar
Zhang, P., Luginsland, J. W., Lau, Y. Y., Booske, J. H., Gilgenbach, R. M., Jensen, K. L., Peckerar, M., Shiffler, D., Fairchild, S., Verboncoeur, J. P. et al. 2015b Ultrafast and nanoscale interfacial charge transport and its interaction with electromagnetic waves. In DoE Whitepaper on the Frontiers of Plasma Science. https://www.orau.gov/plasmawkshps2015/whitepapers.htm.Google Scholar
Zhang, X.-G., Lu, Z.-Y. & Pantelides, S. T. 2006 First-principles theory of tunneling currents in metal-oxide-semiconductor structures. Appl. Phys. Lett. 89 (3), 32112.Google Scholar
Ziegler, M., Harnack, O. & Kohlstedt, H. 2014 Resistive switching in lateral junctions with nanometer separated electrodes. Solid-State Electron. 92, 2427.Google Scholar
Zier, J., Gomez, M. R., French, D. M., Gilgenbach, R. M., Lau, Y. Y., Tang, W. W., Cuneo, M. E., Mehlhorn, T. A., Johnston, M. D. & Mazarakis, M. G. 2008 Wire-tension effects on plasma dynamics in a two-wire -pinch. IEEE Trans. Plasma Sci. 36 (4), 12841285.Google Scholar
Figure 0

Figure 1. Self-consistent model for the quantum tunnelling current in a one-dimensional planar nanoscale Au-vaccum-Au diode (Zhang 2015). The gap distance is $D=1~\text{nm}$, gap voltage is $V_{g}$ and the normalized current density $\unicode[STIX]{x1D6FE}=J/J_{CL}$ is in terms of the Child–Langmuir law $J_{CL}$. The $J$-V (current density–voltage) curve is compared with scaling laws in various limits: Simmons formula (Simmons 1963a), Fowler–Nordheim (FN) law (Fowler & Nordheim 1928), Child–Langmuir (CL) law (Child 1911; Langmuir 1913) and quantum CL law (Lau et al.1991; Ang et al.2003).

Figure 1

Figure 2. Time-dependent total emission current density $w$ ($x$, $t$) normalized to the time-averaged emission current density ${<}w>$, as a function of time $t$ and space $x$, for laser electric field $F_{\text{1}}=1~\text{V}~\text{nm}^{-1}$ under three dc fields $F_{0}=1,5,10~\text{V}~\text{nm}^{-1}$ (Zhang & Lau 2016). Time is normalized to the laser period $2\unicode[STIX]{x03C0}/\unicode[STIX]{x1D714}$, and space is normalized to a length scale $\sqrt{\hslash ^{2}/2mW}$, where $\unicode[STIX]{x1D714}$ is the laser frequency, $m$ is the electron rest mass and $W$ is the metal work function. We assumed the metal is gold, with $W=5.1~\text{eV}$, Fermi level $E_{F}=5.53~\text{eV}$ and laser wavelength $\unicode[STIX]{x1D706}=800~\text{nm}$. The vacuum–metal interface is located at $x=0$.

Figure 2

Figure 3. Two basic types of thin film contact: (a) the horizontal type (Zhang et al.2011, 2012, 2013; Zhang & Lau 2014) and (b) the vertical type (Zhang & Lau 2013).