1. Introduction and main results
The fractional Laplacian has nowadays become a focus of research due to its extensive applications in describing anomalous diffusions in plasmas, flames propagation and chemical reactions in liquids, population dynamics, geophysical fluid dynamics, see [Reference Caffarelli and Vasseur4, Reference Chen, Li and Ma7, Reference Constantin8] and the references therein. Moreover, it also has important applications in the fields of probability and finance, for example, see [Reference Applebaum1–Reference Bertoin3]. In particular, it can be regarded as the infinitesimal generator of an isotropic stable Lévy diffusion process. To better apply theories of the fractional Laplacian to practice, it is significantly important to make clear its own properties, especially those different from the classical Laplacian operator.
Before listing our main results, we first fix some notations. Let $n\geq 1$, $p\geq 2$
and $0<\sigma <1$
. Define the fractional $p$
-Laplacian $(-\Delta )^{\sigma }_{p}$
as follows:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU1.png?pub-status=live)
where $c_{n,\sigma p}$ is a positive constant and $P.V.$
represents the Cauchy principal value. It is worth pointing out that $(-\Delta )^{\sigma }_{p}$
becomes the linear fractional Laplacian operator $(-\Delta )^{\sigma }$
if $p=2$
, while it is a nonlinear nonlocal operator if $p>2$
. The definition of $(-\Delta )^{\sigma }_{p}u$
is valid under the condition that $u\in C^{\sigma p+\alpha }_{loc}(\mathbb {R}^{n})\cap \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$
for some $\alpha >0$
, where $C^{\sigma p+\alpha }_{loc}:=C^{[\sigma p+\alpha ],\sigma p+\alpha -[\sigma p+\alpha ]}_{loc}$
with $[\sigma p+\alpha ]$
denoting the integer part of $\sigma p+\alpha$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU2.png?pub-status=live)
Recently, Du et al. [Reference Du, Jin, Xiong and Yang11] derived the following fact:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU3.png?pub-status=live)
In particular, they constructed an example showing that the nonnegative constant $\theta$ can be strictly positive, which is different from the classical Laplacian operator. This discrepancy essentially stems from the nonlocal behaviour of the fractional Laplacian operator. Inspired by their proof for the linear fractional Laplacian, in this paper we further overcome the nonlinear difficulty for the fractional $p$
-Laplacian operator and prove that the above fact also holds for the nonlinear nonlocal operator $(-\Delta )^{\sigma }_{p}$
with $p>2$
. Moreover, our result can be extended to more general nonlinear nonlocal operators. The principal result of this paper is stated as follows.
Theorem 1.1 Let $n\geq 1$, $p>2$
, $0<\sigma <1$
and $\alpha >0$
. Assume that a sequence of nonnegative functions $\{u_{i}\}\subset \mathcal {L}_{\sigma p}(\mathbb {R}^{n})\cap C^{\sigma p+\alpha }_{loc}(\mathbb {R}^{n})$
converges in $C_{loc}^{\sigma p+\alpha }(\mathbb {R}^{n})$
to a function $u\in \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$
, and $\{(-\Delta )^{\sigma }_{p}u_{i}\}$
converges pointwisely in $\mathbb {R}^{n}$
. Then for any $x\in \mathbb {R}^{n}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU4.png?pub-status=live)
where $\theta$ is a nonnegative constant given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU5.png?pub-status=live)
Proof. For any fixed $x\in \mathbb {R}^{n}$ and $R > > |x|+1$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn1.png?pub-status=live)
In light of the fact that $u_{i}\rightarrow u$ in $C^{\sigma p+\alpha }(B_{2R}(0))$
, we obtain that for each $0<\varepsilon <1$
, there exists an integer $N>0$
such that for every $i>N$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn2.png?pub-status=live)
Define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU6.png?pub-status=live)
where $\Phi _{i}(x,\varepsilon )$ denotes the integral in $\Phi _{i}(x,R)$
with the domain $B_{R}(0)$
replaced by $B_{\varepsilon }(x)$
. Using (1.2), we deduce that for $x,y\in B_{2R}(0)$
, $i>N$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU7.png?pub-status=live)
which yields that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn3.png?pub-status=live)
On the other hand, if $\sigma p+\alpha \in (0,1]$, then it follows from (1.2) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn4.png?pub-status=live)
When $\sigma p+\alpha \in (1,\infty )$, utilizing (1.2) again, it follows from Taylor expansion that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU8.png?pub-status=live)
where we utilized the following element inequality:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU9.png?pub-status=live)
By the same argument, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU10.png?pub-status=live)
Therefore, we obtain that if $\sigma p+\alpha \in (1,\infty )$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn5.png?pub-status=live)
where we utilized the anti-symmetry of $\nabla u(x)(x-y)$ and $\nabla u_{i}(x)(x-y)$
with regard to the centre $x$
. Consequently, combining (1.3)–(1.5), we deduce that for every $i>N$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU11.png?pub-status=live)
which implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn6.png?pub-status=live)
Note that $\{(-\Delta )^{\sigma }_{p}u_{i}\}$ is a pointwise convergent sequence, we then deduce from (1.1) and (1.6) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn7.png?pub-status=live)
Since $u\in \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$ and $R > > |x|+1$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU12.png?pub-status=live)
which yields that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU13.png?pub-status=live)
This, in combination with (1.1) and (1.6)–(1.7), leads to that $\lim \limits _{R\rightarrow \infty }\lim \limits _{i\rightarrow \infty }\Psi _{i}(x,R)$ exists and is finite,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn8.png?pub-status=live)
Denote
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU14.png?pub-status=live)
Then we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn9.png?pub-status=live)
For any given $\varepsilon >0$, it follows from Young's inequality that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn10.png?pub-status=live)
We now divide into three cases to estimate $\mathcal {K}_{2}$ and $\mathcal {K}_{3}$
in the following.
Case 1. Consider $2< p\leq 3$. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU15.png?pub-status=live)
then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU16.png?pub-status=live)
Hence it follows from Young's inequality that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn11.png?pub-status=live)
Substituting (1.10)–(1.11) into (1.9), we derive
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn12.png?pub-status=live)
Case 2. Consider the case when $p>3$ is an integer. From the binomial theorem and Young's inequality, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn13.png?pub-status=live)
Using (1.13), we deduce
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU17.png?pub-status=live)
which implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU18.png?pub-status=live)
Analogously,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU19.png?pub-status=live)
Hence, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn14.png?pub-status=live)
Utilizing (1.14) and Young's inequality, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU20.png?pub-status=live)
which, in combination with (1.9)–(1.10), gives that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn16.png?pub-status=live)
Case 3. Consider the case when $p>3$ is not an integer. On one hand, making use of (1.13), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn17.png?pub-status=live)
From Young's inequality, we deduce
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn18.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn19.png?pub-status=live)
Substituting (1.18)–(1.19) into (1.17), it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn20.png?pub-status=live)
On the other hand, using (1.13) again, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn21.png?pub-status=live)
It follows from Young's inequality that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn22.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn23.png?pub-status=live)
Combining (1.20)–(1.23), we deduce
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU21.png?pub-status=live)
This, together with (1.20) again, gives that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn24.png?pub-status=live)
In light of (1.24), it follows from Young's inequality that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn25.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn26.png?pub-status=live)
Therefore, substituting (1.10) and (1.25)–(1.26) into (1.9), we derive
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn27.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn28.png?pub-status=live)
Observe that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn29.png?pub-status=live)
Since $\lim \limits _{R\rightarrow \infty }\lim \limits _{i\rightarrow \infty }\Psi _{i}(x,R)$ exists and is finite, it follows from (1.12), (1.15)–(1.16) and (1.27)–(1.29) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU22.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU23.png?pub-status=live)
Due to the fact that $R > > |x|+1$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU24.png?pub-status=live)
Hence, we deduce
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU25.png?pub-status=live)
By virtue of the arbitrariness of $\varepsilon$ and $\{u_{i}\}$
is nonnegative, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU26.png?pub-status=live)
In order to show that the limit constant $\theta$ captured in theorem 1.1 may be positive, we consider a sequence of nonnegative functions in the following. Choose a smooth cut-off function $\eta$
satisfying that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn30.png?pub-status=live)
Then for any $0< s< t$ and $j\geq 1$
, define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn31.png?pub-status=live)
where $\phi (x)=\eta (|x|-3)$, and $\psi (x)=\eta (|x|-6)$
, $R_{j}=j^{\frac {(t-s)(p-1)}{\sigma p}}\beta ^{\frac {1}{\sigma p}}$
with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn32.png?pub-status=live)
Example 1.2 Let $n\geq 1$, $p>2$
and $0<\sigma <1$
. If condition (1.31) holds, then we obtain that $v_{j}$
converges to $1$
in $C^{2}_{loc}(\mathbb {R}^{n})$
, and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU27.png?pub-status=live)
Remark 1.3 We here would like to point out that the examples constructed in example 1.2 and theorem 2.1 were first given in [Reference Du, Jin, Xiong and Yang11].
Proof. It is easily seen from (1.31) that $v_{j}\in C_{c}^{\infty }(\mathbb {R}^{n})$, $v_{j}\geq 0$
in $\mathbb {R}^{n}$
, $v_{j}=1$
in $B_{R_{j}}$
, and $\|v_{j}-1\|_{C^{2}_{loc}}\rightarrow 0$
, as $i\rightarrow \infty$
. A direct computation gives that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn33.png?pub-status=live)
For any fixed $x\in \mathbb {R}^{n}$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU28.png?pub-status=live)
where $\beta$ is defined by (1.32). This, together with (1.33), gives that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU29.png?pub-status=live)
The proof is complete.
2. Blow-up analysis for the extended fractional Nirenberg problem
The extended fractional Nirenberg problem is equivalent to investigating the following equation:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn34.png?pub-status=live)
where $p\geq 2$ and $q\in \mathbb {R}$
. It has been shown in [Reference Du, Jin, Xiong and Yang11] that there arises blow-up phenomena for the linear fractional Laplacian due to the nonzero constant $\theta$
captured in theorem 1.1. Specially, for $p=2$
, the compactness of solutions to (2.1) will fail in the region where $K$
is negative. In the following, we follow the proof of theorem 1.3 in [Reference Du, Jin, Xiong and Yang11] and extend the result to the nonlinear case of $p>2$
. On the other hand, when $K$
is positive, Jin et al. [Reference Jin, Li and Xiong12–Reference Jin, Li and Xiong14] derived a priori estimates for the fractional equation (2.1) with $p=2$
.
While these above-mentioned works are related to the fractional Nirenberg problem, there is another direction of research to study the classical elliptic equation $-\Delta u=K(x)u^{p}$. When $n=1,2$
and $1< p<\infty$
, or $n\geq 3$
and $1< p<\frac {n+2}{n-2}$
, $p$
is called a subcritical Sobolev exponent, while it is the critical Sobolev exponent if $n\geq 3$
and $p=\frac {n+2}{n-2}$
. In particular, the elliptic equation in the case of critical Sobolev exponent corresponds to the Nirenberg problem, which is to seek a new metric conformal to the flat metric on $\mathbb {R}^{n}$
so that its scalar curvature is $K(x)$
. Generally, it needs to establish priori estimates of the solutions for the purpose of obtaining the existence of solutions. We refer to [Reference Gidas and Spruck9, Reference Gidas and Spruck10] for the subcritical case. With regard to the critical case, see [Reference Chang, Gursky and Yang5, Reference Li15, Reference Schoen and Zhang17] for positive functions $K$
and [Reference Chen and Li6, Reference Lin16, Reference Zhu18] for $K$
changing signs, respectively.
Theorem 2.1 Assume that $n\geq 1$, $p>2$
, $0<\sigma <1$
, $q\in \mathbb {R}$
and $s>-\frac {\sigma p}{p-1}$
. Then there exist two positive constants $c_{0}=c_{0}(n,\sigma,p,q,s)$
and $C_{0}=C_{0}(n,\sigma,p,q,s)$
, a sequence of functions $\{K_{j}\}\subset C^{\infty }(\mathbb {R}^{n})$
satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU30.png?pub-status=live)
and a sequence of positive functions $\{u_{j}\}\subset C^{\infty }(\mathbb {R}^{n})$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU31.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU32.png?pub-status=live)
Proof. Let $\eta$ and $\phi$
be defined in (1.30) and (1.31). For $q\in \mathbb {R}$
and $s>-\frac {\sigma p}{p-1}$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU33.png?pub-status=live)
where $\varphi (x)=\eta (|x|-R)$ and $R=R(n,p,q,\sigma,s,j)>9$
is a sufficiently large constant to be determined later. Then $u_{j}\in C^{\infty }(\mathbb {R}^{n})\cap \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$
and $u_{j}>0$
in $\mathbb {R}^{n}$
. Denote
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU34.png?pub-status=live)
Then $K_{j}\in C^{\infty }(\mathbb {R}^{n})$. Moreover, $\{K_{j}\}$
satisfies the following properties: there exists four positive constants $C_{i}:=C_{i}(n,\sigma,p)$
, $i=1,2,3,4$
, such that for every $j\geq 1$
,
(K1) $-C_{1}\leq K_{j}(x)\leq -C_{2}$
, and $\sum \limits ^{3}_{i=1}|\nabla ^{i}K_{j}(x)|\leq C_{3}$
in $B_{2}$
;
(K2) $\nabla ^{2}K_{j}(0)\leq -C_{4}\mathbf {I}_{n}$
, where $\mathbf {I}_{n}$
denotes $n\times n$
identity matrix.
We first prove $(\mathbf {K1})$. Observe that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn35.png?pub-status=live)
where $\mathcal {A}_{\varphi }(y):=\varphi (y)-1+j^{1-q}\varphi (y)-j^{-q}|y|^{-s}\varphi (y)$. For simplicity, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU35.png?pub-status=live)
A straightforward computation yields that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU36.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU37.png?pub-status=live)
For $x\in B_{2}$, $y\in B_{R}^{c}$
, we have $|x-y|\geq |y|/2$
in virtue of $R>9$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU38.png?pub-status=live)
For a sufficiently large $R>9$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU39.png?pub-status=live)
which implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU40.png?pub-status=live)
Furthermore, after differentiating (2.2), it follows from a similar calculation that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU41.png?pub-status=live)
We proceed to verify property $(\bf {K2})$. A simple calculation shows that for $y\in B_{3}^{c}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn36.png?pub-status=live)
Since the integral domain is symmetric, then we see from (2.2) to (2.3) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU42.png?pub-status=live)
If $k=l$, it follows from the radial symmetry of $\phi$
and $\varphi$
that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU43.png?pub-status=live)
where we used the fact that $|\mathcal {A}_{\varphi }(y)|^{p-2}\varphi (y)\leq 3$ in $B_{R}^{c}$
. That is, property $(\bf {K2})$
holds.
From the radial symmetry of $u_{j}$ with respect to the origin, we know that $K_{j}$
is also radially symmetric. Then we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU44.png?pub-status=live)
which, together with $(\bf {K1})$–$(\bf {K2})$
, leads to that for $j\geq 1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqn37.png?pub-status=live)
where $e_{1}=(1,0,...,0)\in \mathbb {R}^{n}$, $\varepsilon _{0}:=\varepsilon _{0}(n,p,\sigma )\in (0,1/4)$
is a small constant and $c_{1}:=c_{1}(n,p,\sigma )$
is a positive constant.
Define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU45.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU46.png?pub-status=live)
Then combining $(\bf {K1})$ and (2.4), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU47.png?pub-status=live)
where $\bar {c}=\bar {c}(n,\sigma,p,q,s)$ and $\bar {C}=\bar {C}(n,\sigma,p,q,s)$
. Moreover, recalling the definition of $u_{j}$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305030808071-0370:S030821052300032X:S030821052300032X_eqnU48.png?pub-status=live)
The proof is finished.
Data availability statement
The data used to support the findings of this study are available from the corresponding author upon request.
Acknowledgements
The author thanks Professor C. X. Miao for his constant encouragement and useful discussions. The author was partially supported by CPSF (2021M700358).
Conflict of interest
None.