1. Introduction
For any integer
$n\ge 3$
, we have the determinant identity
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu1.png?pub-status=live)
since
$(1-k)+(3-k)=2(2-k)$
for all
$k=1,\ldots ,n$
. However, it is nontrivial to deter- mine the characteristic polynomial
$\det [xI_n-(\,j-k)]_{1\le \,j,k\le n}$
of the matrix
$[\,j-k]_{1\le \,j,k\le n}$
, where
$I_n$
is the identity matrix of order n.
For
$j,k\in \mathbb N=\{0,1,2,\ldots \}$
, the Kronecker symbol
$\delta _{jk}$
takes the value
$1$
or
$0$
according to whether
$j=k$
or not. In 2003, Cloitre [Reference Cloitre1] generated the sequence
$\det [\,j-k+\delta _{jk}]_{1\le \,j,k\le n}$
$(n=1,2,3,\ldots )$
with the initial fifteen terms:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu2.png?pub-status=live)
In 2013, C. Baker added a comment to [Reference Cloitre1] in which he claimed that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn1.png?pub-status=live)
without any proof. It seems that Baker found the recurrence of the sequence using the Maple package gfun.
Recall that the q-analogue of an integer m is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu3.png?pub-status=live)
Note that
$\lim _{q\to 1}[m]_q=m$
.
In our first theorem, we determine the characteristic polynomial of the matrix
$[q^{\,j-k}+t]_{1\le \,j,k\le n}$
for any complex number
$q\not =0,1$
.
Theorem 1.1. Let
$n\ge 2$
be an integer and let
$q\not =0,1$
be a complex number. Then the characteristic polynomial of the matrix
$P=[q^{\,j-k}+t]_{1\le \,j,k\le n}$
is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn2.png?pub-status=live)
Putting
$t=-1$
and replacing x by
$(q-1)x$
in Theorem 1.1, we immediately obtain the following corollary.
Corollary 1.2. Let
$n\ge 2$
be an integer and let
$q\not =0,1$
be a complex number. For the matrix
$P_q=[[\,j-k]_q]_{1\le \,j,k\le n}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu4.png?pub-status=live)
Remark 1.3. Fix an integer
$n\ge 2$
. Observe that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu5.png?pub-status=live)
So, by Corollary 1.2,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn3.png?pub-status=live)
which indicates that when
$n>2$
, the n eigenvalues of
$A_n=[\,j-k]_{1\le \,j,k\le n}$
are
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu6.png?pub-status=live)
Note that (1.1) follows from (1.3) with
$x=-1$
. Concerning the permanent of
$A_n$
, motivated by [Reference Sun3, Conjecture 11.23], we conjecture that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu7.png?pub-status=live)
for any odd prime p. Inspired by (1.1), Sun [Reference Sun4] conjectured that for any positive integers m and n,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu8.png?pub-status=live)
for a certain polynomial
$f(x)\in \mathbb Q[x]$
with
$\deg f=(m+1)^2-4$
.
Applying Corollary 1.2 with
$q=-1$
, we find that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu9.png?pub-status=live)
for any integer
$n\ge 2$
. In particular,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu10.png?pub-status=live)
Applying Theorem 1.1 with
$(t,x)=(-1,-2)$
and
$(1,-1)$
, we obtain the following result.
Corollary 1.4. For any positive integer n,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu11.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu12.png?pub-status=live)
In contrast to Theorem 1.1, we also establish the following result.
Theorem 1.5. Let
$n\ge 2$
be an integer and let
$q\not =0,1$
be a complex number. Then the characteristic polynomial of the matrix
$Q=[q^{\,j+k}+t]_{0\le \,j,k\le n-1}$
is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn4.png?pub-status=live)
The identity (1.4) with
$q=2$
and
$x=t=-1$
yields the following corollary.
Corollary 1.6. For any positive integer n,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu13.png?pub-status=live)
For complex numbers a and
$b\not =0$
, the Lucas sequence
$u_m=u_m(a,b)$
$(m\in \mathbb Z)$
and its companion sequence
$v_m=v_m(a,b)$
$(m\in \mathbb Z)$
are defined as follows:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu14.png?pub-status=live)
By the Binet formula,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu15.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn5.png?pub-status=live)
are the two roots of the quadratic equation
$x^2-ax+b=0$
. Clearly,
$b^nu_{-n}=-u_n$
and
$b^nv_{-n}=v_n$
for all
$n\in \mathbb N$
. For any positive integer n, it is known that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu16.png?pub-status=live)
(see [Reference Sun5, page 10]), which can be easily proved by induction. Note also that
$u_m(2,1)=m$
for all
$m\in \mathbb Z$
.
For
$P(z)=\sum _{k=0}^{n-1}a_kz^k\in \mathbb C[z]$
, it is known (see [Reference Krattenthaler2, Lemma 9]) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu17.png?pub-status=live)
Thus, for any integer
$n\ge 3$
and complex numbers a and
$b\not =0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu18.png?pub-status=live)
(where
$\alpha $
and
$\beta $
are given by (1.5)), since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu19.png?pub-status=live)
As an application of Theorem 1.1, we obtain the following new result.
Theorem 1.7. Let a and
$b\not =0$
be complex numbers with
$a^2\not =4b$
. Let
$(w_m)_{m\in \mathbb Z}$
be a sequence of complex numbers with
$w_{k+1}=aw_k-bw_{k-1}$
for all
$k\in \mathbb Z$
. For any complex number c and integer
$n\ge 2$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn6.png?pub-status=live)
Remark 1.8. It would be hard to guess the exact formula for
$\det [w_{\,j-k}+c\delta _{jk}]_{1\le \,j,k\le n}$
in Theorem 1.7 by looking at various numerical examples.
Corollary 1.9. Let
$a,b,c$
be complex numbers with
$b\not =0$
and
$a^2\not =4b$
. For any integer
$n\ge 2$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu20.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu21.png?pub-status=live)
For any
$m\in \mathbb Z$
,
$u_m(-1,1)$
coincides with the Legendre symbol
$(\frac {m}{3})$
, and
$v_m(1,-1)=\omega ^m+\bar \omega ^m$
, where
$\omega $
denotes the cube root
$(-1+\sqrt {-3})/2$
of unity. Applying Corollary 1.9 with
$a=-1$
and
$b=1$
, we get the following result.
Corollary 1.10. For any integer
$n\ge 2$
and complex number c,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu22.png?pub-status=live)
Recall that
$F_m=u_m(1,-1)$
(
$m\in \mathbb Z$
) are the well-known Fibonacci numbers and
$L_m=v_m(1,-1)$
$(m\in \mathbb Z$
) are the Lucas numbers. Corollary 1.9 with
$a=1$
and
$b=-1$
yields the following result.
Corollary 1.11. For any integer
$n\ge 2$
and complex number c,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu23.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu24.png?pub-status=live)
Although we have Theorem 1.5 which is similar to Theorem 1.1, it seems impossible to use Theorem 1.5 to deduce a result similar to Theorem 1.7.
2. Proof of Theorem 1.1
Lemma 2.1. Let n be a positive integer, and let
$q\neq 0$
and t be complex numbers with
$n-[n]_q+t(q^{1-n}[n]_q-n)\not =0$
. Suppose that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn7.png?pub-status=live)
Then, for any positive integer j,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn8.png?pub-status=live)
Proof. As
$\gamma ^2-n(t+1)\gamma +(n^2-q^{1-n}[n]_q^2)t=0,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu25.png?pub-status=live)
and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn9.png?pub-status=live)
For
$j\in \{1,2,3,\ldots \}$
, set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu26.png?pub-status=live)
Then, by (2.3),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu27.png?pub-status=live)
So
$\Delta _1=\Delta _2=\cdots $
.
Next we show that
$\Delta _n=0$
. Observe that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu28.png?pub-status=live)
by the definition of y. So
$\Delta _n=0$
.
In view of the above,
$\Delta _{j}=0$
for all
$j=1,2,3,\ldots $
. This concludes the proof.
Proof of Theorem 1.1.
It is easy to verify the desired result for
$n=2$
. Below we assume that
$n\ge 3$
.
If
$n-[n]_q$
and
$q^{1-n}[n]_q-n$
are both zero, then
$q^{n-1}=1$
and
$n=[n]_q=1$
. As
$n\ge 3$
, there are infinitely many
$t\in \mathbb C$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu29.png?pub-status=live)
Take such a number t, and choose
$\gamma $
and y as in (2.1). Then
$\gamma $
given in (2.1) is an eigenvalue of the matrix
$P=[q^{\,j-k}+t]_{1\le \,j,k\le n}$
, and the column vector
$v=(v_1,\ldots ,v_n)^T$
with
$v_k=1+y(q^{k-n}-1)$
is an eigenvector of P associated with the eigenvalue
$\gamma $
. Note that
$\gamma $
given by (2.1) has two different choices since
$n^2(t-1)^2+4tq^{1-n}[n]_q^2\not =0$
.
Let
$s\in \{3,\ldots ,n\}$
. For
$1\le k\le n$
, let us define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu30.png?pub-status=live)
It is easy to verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu31.png?pub-status=live)
Thus,
$0$
is an eigenvalue of the matrix
$P=[q^{\,j-k}+t]_{1\le \,j,k\le n}$
, and the column vector
$v^{(s)}=(v^{(s)}_1,\ldots ,v^{(s)}_n)^T$
is an eigenvector of P associated with the eigenvalue
$0$
.
If
$\sum _{s=3}^n c_sv^{(s)}$
is the zero column vector for some
$c_3,\ldots ,c_n\in \mathbb C$
, then for each
$k=3,\ldots ,n$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu32.png?pub-status=live)
Thus, the
$n-2$
column vectors
$v^{(3)},\ldots ,v^{(n)}$
are linearly independent over
$\mathbb C$
.
By the above, the n eigenvalues of the matrix
$P=[q^{\,j-k}+t]_{1\le \,j,k\le n}$
are the two values of
$\gamma $
given by (2.2) and
$\lambda _3=\cdots =\lambda _n=0$
. Thus, the characteristic polynomial of P is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu33.png?pub-status=live)
Thus, the identity (1.2) holds for infinitely many values of t. Note that both sides of (1.2) are polynomials in t for any fixed
$x\in \mathbb C$
. Thus, if we view both sides of (1.2) as polynomials in x and t, then the identity (1.2) still holds. This completes the proof.
3. Proof of Theorem 1.5
The following lemma is quite similar to Lemma 2.1.
Lemma 3.1. Let n be a positive integer, and let
$q\neq 0$
and t be complex numbers with
$[n]_{q^2}+(q^{1-n}t-q^{n-1})[n]_q-nt\neq 0$
. Suppose that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn10.png?pub-status=live)
Then, for every
$j=0,1,2,\ldots ,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn11.png?pub-status=live)
Proof. Since
$\gamma ^2-(nt+[n]_{q^2})\gamma +t(n[n]_{q^2}-[n]_q^2)=0,$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn12.png?pub-status=live)
For
$j\in \{0,1,2,\ldots \}$
, set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu34.png?pub-status=live)
It is easy to see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu35.png?pub-status=live)
with the aid of (3.3). So
$R_0=R_1=\cdots $
. As
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu36.png?pub-status=live)
we get
$R_{n-1}=0$
. So the desired result follows.
Proof of Theorem 1.5.
It is easy to verify the desired result for
$n=2$
. Below we assume that
$n\ge 3$
.
If
$[n]_{q^2}-q^{n-1}[n]_q$
and
$q^{1-n}[n]_q-n$
are both zero, then
$[n]_q\not =0$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu37.png?pub-status=live)
and hence
$q^{n-1}=1$
and
$n=[n]_q=1$
. As
$n\ge 3$
, there are infinitely many
$t\in \mathbb C$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu38.png?pub-status=live)
Take such a number t, and choose
$\gamma $
and z as in (3.1). Then
$\gamma $
given in (3.1) is an eigenvalue of the matrix
$Q=[q^{\,j+k}+t]_{0\le \,j,k\le n-1}$
, and the column vector
$v=(v_0,\ldots ,v_{n-1})^T$
with
$v_k=1+z(q^{k-n+1}-1)$
is an eigenvector of Q associated with the eigenvalue
$\gamma $
. There are two different choices for
$\gamma $
since
$(nt-[n]_{q^2})^2+4t[n]_q^2\not =0$
.
Let
$s\in \{3,\ldots ,n\}$
. For
$k\in \{0,\ldots ,n-1\}$
, define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu39.png?pub-status=live)
It is easy to verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu40.png?pub-status=live)
Thus,
$0$
is an eigenvalue of the matrix
$Q=[q^{\,j+k}+t]_{0\le \,j,k\le {n-1}}$
, and the column vector
$v^{(s)}=(v^{(s)}_0,\ldots ,v^{(s)}_{n-1})^T$
is an eigenvector of Q associated with the eigenvalue
$0$
.
If
$\sum _{s=3}^{n} c_sv^{(s)}$
is the zero column vector for some
$c_3,\ldots ,c_{n}\in \mathbb C$
, then for each
$k=2,\ldots ,n-1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu41.png?pub-status=live)
Thus, the
$n-2$
column vectors
$v^{(3)},\ldots ,v^{(n)}$
are linearly independent over
$\mathbb C$
.
By the above, the n eigenvalues of the matrix
$Q=[q^{\,j+k}+t]_{0\le \,j,k\le {n-1}}$
are the two values of
$\gamma $
given by (3.2) and
$\lambda _3=\cdots =\lambda _n=0$
. Thus, the characteristic polynomial of Q is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu42.png?pub-status=live)
Thus, the identity (1.4) holds for infinitely many values of t. Note that both sides of (1.4) are polynomials in t for any fixed
$x\in \mathbb C$
. If we view both sides of (1.4) as polynomials in x and t, then the identity (1.4) still holds. This concludes the proof.
4. Proof of Theorem 1.7
Proof of Theorem 1.7.
If
$w_0=w_1=0$
or
$n=2$
, then the desired result can be easily verified. Below we assume that
$n\ge 3$
and
$\{w_0,w_1\}\not =\{0\}$
.
Let
$\alpha $
and
$\beta $
be the two roots of the quadratic equation
$z^2-az+b=0$
. Note that
$\alpha \beta =b\not =0$
. Also,
$\alpha \not =\beta $
since
$\Delta =a^2-4b$
is nonzero. It is well known that there are constants
$c_1,c_2\in \mathbb C$
such that
$w_m=c_1\alpha ^m+c_2\beta ^m$
for all
$m\in \mathbb Z$
. As
$c_1+c_2=w_0$
and
$c_1\alpha +c_2\beta =w_1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqn13.png?pub-status=live)
Since
$w_0$
or
$w_1$
is nonzero, one of
$c_1$
and
$c_2$
is nonzero. Without any loss of generality, we assume
$c_1\not =0$
.
Let W denote the matrix
$[w_{\,j-k}+c\delta _{jk}]_{1\le \,j,k\le n}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu43.png?pub-status=live)
where
$q=\alpha /\beta \not =0,1$
,
$t=c_2/c_1$
and
$x=-c/c_1$
. By applying Theorem 1.1, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu44.png?pub-status=live)
In view of (4.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_eqnu45.png?pub-status=live)
Therefore, the desired evaluation (1.6) follows.