Reference [Reference Hatano, Kawasumi, Saito and Tanaka1] studied the boundedness of the fractional maximal operator
$M_{\alpha }$
and the fractional integral operator
$I_{\alpha }$
on the Choquet–Morrey space
${\mathcal M}^p_q(H^d)$
and the weak Choquet space
$\mathrm {w}\hskip -0.6pt{L}^p(H^d)$
. The purpose of this note is to correct the bound for
$I_\alpha $
in [Reference Hatano, Kawasumi, Saito and Tanaka1, Theorem 1.3(ii)] by restricting the range of the parameters and to correct a minor error in the proofs of [Reference Hatano, Kawasumi, Saito and Tanaka1, Theorems 1.1(ii) and 1.3(ii)].
Let
$n\in {\mathbb N}$
and
$0<d\le n$
. For
$0<p<\infty $
, the Choquet space
$L^p(H^d)$
and the weak Choquet space
$\mathrm {w}\hskip -0.6pt{L}^p(H^d)$
comprise the functions such that the quasi-norms
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu1.png?pub-status=live)
are finite, where
$H^d$
denotes the d-dimensional Hausdorff content, and the integral with respect to
$H^d$
is taken in the Choquet sense. For
$0<q\le p<\infty $
, the Choquet–Morrey space
${\mathcal M}^p_q(H^d)$
is the set of all functions such that the quasi-norm
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu2.png?pub-status=live)
is finite, where
${\mathcal Q}$
denotes the family of cubes Q with sides parallel to the coordinate axes in
$\mathbb {R}^n$
and
$\ell (Q)$
is the side length of the cube Q.
The fractional maximal operator of order
$\alpha $
,
$0\le \alpha <n$
, is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu3.png?pub-status=live)
where
$\chi _{E}$
is the characteristic function of the set E. The fractional integral operator of order
$\alpha $
,
$0<\alpha <n$
, is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu4.png?pub-status=live)
We restate the relevant results from [Reference Hatano, Kawasumi, Saito and Tanaka1] with the correction to [Reference Hatano, Kawasumi, Saito and Tanaka1, Theorem 1.3(ii)].
Theorem 1 [Reference Hatano, Kawasumi, Saito and Tanaka1, Theorem 1.1].
If
$0<d\le n$
,
$0\le \alpha <n$
,
$d/n\le r<p<d/\alpha $
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqn1.png?pub-status=live)
then:
-
(i)
$\|M_{\alpha }f\|_{\mathrm {w}\hskip -0.6pt{L}^q(H^{d-\alpha r})}\lesssim \|f\|_{\mathrm {w}\hskip -0.6pt{L}^p(H^d)};$
-
(ii)
$\|I_{\alpha }f\|_{\mathrm {w}\hskip -0.6pt{L}^q(H^{d-\alpha r})}\lesssim \|f\|_{\mathrm {w}\hskip -0.6pt{L}^p(H^d)}$ for
$0<d<n$ ,
$0<\alpha <n$ and
$d/n<r<p<d/\alpha $ .
Theorem 2 [Reference Hatano, Kawasumi, Saito and Tanaka1, Theorem 1.3 corrected].
If
$0<d\le n$
,
$0\le \alpha <n$
,
$d/n<r\le p<d/\alpha $
and (1) holds, then:
-
(i)
$\|M_{\alpha }f\|_{{\mathcal M}^q_r(H^{d-\alpha r})}\lesssim \|f\|_{{\mathcal M}^p_r(H^d)};$
-
(ii)
$\|I_{\alpha }f\|_{{\mathcal M}^q_r(H^{d-\alpha r})}\lesssim \|f\|_{{\mathcal M}^p_s(H^d)}$ for
$0<d<n$ ,
$0<\alpha <n$ ,
$d/n<r<s<p<d/\alpha $ and
$q/p\le n/d$ .
Remark 3. In Theorem 2(ii), our proof requires
$r<s$
. We have not been able to prove the result when
$s=r$
.
Proof of Theorem 1(ii).
Choose
$\theta $
and
$\beta $
so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqn2.png?pub-status=live)
By (1), for
$r\alpha /p<\beta <\alpha $
, this defines
$\theta $
as an increasing function of
$\beta $
and
$1<\theta < q/p$
. Choose
$\theta \le n/d$
and set
$\delta =\theta d$
and
$u=\theta p$
. Since
$\beta <\alpha $
, we have
$p<u<q$
. By (1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqn3.png?pub-status=live)
From (3), we can apply [Reference Hatano, Kawasumi, Saito and Tanaka1, Lemma 2.7] with the parameters
$d,p$
replaced by
$\delta ,u$
(noting that
$\delta \le n$
), to obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu5.png?pub-status=live)
Let
$s=r\alpha /\beta $
so that
$r<s<p$
. From (2),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu6.png?pub-status=live)
so we can apply Theorem 1(i) with the parameters
$\alpha , q, \alpha r$
replaced by
$\beta , u, \beta s$
to obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu7.png?pub-status=live)
Since we always have
$ \|f\|_{{\mathcal M}^u_{\delta /n}(H^{\delta })} \lesssim \|f\|_{{\mathcal M}^p_{d/n}(H^d)} \lesssim \|f\|_{\mathrm {w}\hskip -0.6pt{L}^p(H^d)}, $
this completes the proof.
Proof of Theorem 2(ii).
Set
$\beta =r\alpha /s$
and define
$\theta $
by (2). By the hypotheses,
$r\alpha /p<\beta <\alpha $
and
$1<\theta < q/p \le n/d$
, using the definition of
$\theta $
and the assumption
$q/p\le n/d$
. Again, set
$\delta =\theta d$
and
$u=\theta p$
, so that
$p<u<q$
. Just as in the proof of Theorem 1(ii), [Reference Hatano, Kawasumi, Saito and Tanaka1, Lemma 2.7] yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu8.png?pub-status=live)
Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu9.png?pub-status=live)
Theorem 2(i) yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241003072708451-0425:S0004972724000741:S0004972724000741_eqnu10.png?pub-status=live)
Since we always have
$ \|f\|_{{\mathcal M}^u_{\delta /n}(H^{\delta })} \lesssim \|f\|_{{\mathcal M}^p_{d/n}(H^d)} \le \|f\|_{{\mathcal M}^p_s(H^d)}, $
this completes the proof.