1 Introduction
The dynamical properties of singular holomorphic foliations have recently drawn a great deal of attention; see the discussions in [Reference Dinh and Sibony9, Reference Fornæss and Sibony11, Reference Fornæss, Sibony and Wold13, Reference Nguyên15, Reference Nguyên17, Reference Nguyên18]. Let us mention one of the remarkable results which establishes the unique ergodicity for general singular holomorphic foliations on compact Kähler surfaces.
Theorem 1.1. (Dinh, Nguyên and Sibony [Reference Dinh, Nguyên and Sibony7])
Let
$\mathscr {F}$
be a holomorphic foliation with only hyperbolic singularities in a compact Kähler surface
$(X,\omega )$
. Assume that
$\mathscr {F}$
admits no directed positive closed current. Then there exists a unique positive
$dd^c$
-closed current T of mass
$1$
directed by
$\mathscr {F}$
.
The first version was stated for
$X=\mathbb {P}^2$
and proved by Fornæss and Sibony [Reference Fornæss and Sibony12]. Later Dinh and Sibony proved the unique ergodicity for foliations in
$\mathbb {P}^2$
with an invariant curve [Reference Dinh and Sibony8]. So one may expect to describe recurrence properties of leaves by studying the density distribution of directed harmonic currents. One has the following result about leaves.
Theorem 1.2. (Fornæss and Sibony [Reference Fornæss and Sibony12])
Let
$(X,\mathscr {F},E)$
be a holomorphic foliation on a compact complex surface X with singular set E. Assume that:
-
(1) there is no invariant analytic curve;
-
(2) all the singularities are hyperbolic;
-
(3) there is no non-constant holomorphic map
$\mathbb {C}\rightarrow X$ such that out of E the image of
$\mathbb {C}$ is locally contained in a leaf.
Then every harmonic current T directed by
$\mathscr {F}$
gives no mass to each single leaf.
A practical way to measure the density of harmonic currents is to use the notion of Lelong number introduced by Skoda [Reference Skoda22]. Indeed Theorem 1.2 above is equivalent to the statement that the Lelong number of T vanishes everywhere outside E. Another result holds near hyperbolic singularities.
Theorem 1.3. (Nguyên [Reference Nguyên16])
Let
$(\mathbb {D}^2,\mathscr {F},\{0\})$
be a holomorphic foliation on the unit bidisc
$\mathbb {D}^2$
defined by the linear vector field
$Z(z,w)=z ({\partial }/{\partial z})+\unicode{x3bb} w ({\partial }/{\partial w}),$
where
$\unicode{x3bb} \in \mathbb {C}\backslash \mathbb {R}$
, that is to say,
$0$
is a hyperbolic singularity. Let T be a harmonic current directed by
$\mathscr {F}$
which does not give mass to any of the two separatrices
$(z=0)$
and
$(w=0)$
. Then the Lelong number of T at
$0$
vanishes.
Next, Nguyên applies this result to prove the existence of Lyapunov exponents for singular holomorphic foliations on compact projective surfaces [Reference Nguyên20]. Very recently he has proved in [Reference Nguyên19] that for every
$n\geqslant 2,$
the Lelong numbers of any directed harmonic current which gives no mass to invariant hyperplanes vanishes near weakly hyperbolic singularities in
$\mathbb {C}^n.$
This result is optimal; see [Reference Dinh and Wu10]. The mass-distribution problem would be completed once we could understand the behaviour of harmonic currents near non-hyperbolic non-degenerate singularities, and near degenerate singularities.
The present paper answers (partly) the problem in the non-hyperbolic linearizable singularity case. Here is our first main result.
Theorem 1.4. Let
$(\mathbb {D}^2,\mathscr {F},\{0\})$
be a holomorphic foliation on the unit bidisc
$\mathbb {D}^2$
defined by the linear vector field
$Z(z,w)=z ({\partial }/{\partial z})+\unicode{x3bb} w ({\partial }/{\partial w})$
, where
$\unicode{x3bb} \in \mathbb {R}^*$
. Let T be a harmonic current directed by
$\mathscr {F}$
which does not give mass to any of the two separatrices
$(z=0)$
and
$(w=0)$
. Assume
$T\neq 0$
. Then the Lelong number of T at
$0$
:
-
• is strictly positive and could be infinite if
$\unicode{x3bb}>0$ ;
-
• vanishes if
$\unicode{x3bb} \in \mathbb {Q}_{<0}$ .
For the foliation concerned
$(\mathbb {D}^2,\mathscr {F},\{0\})$
, a local leaf
$P_\alpha $
, with
$\alpha \in \mathbb {C}^*$
, can be parametrized by
$(z,w)=(e^{-v+iu},\alpha e^{-\unicode{x3bb} v+i\unicode{x3bb} u})$
, with
$u,v\in \mathbb {R}$
. See the parametrization (1) for details. The monodromy group around the singularity is generated by
$(z,w)\mapsto (z,e^{2\pi i\unicode{x3bb} }w)$
. It is a cyclic group of finite order when
$\unicode{x3bb} \in \mathbb {Q}^*$
, of infinite order when
$\unicode{x3bb} \notin \mathbb {Q}$
.
We are now ready to introduce the notion of periodic current, an essential tool in this paper. A directed harmonic current T is called periodic if it is invariant under some cofinite subgroup of the monodromy group, that is, under the action of
$(z,w)\mapsto (z,e^{2k\pi i \unicode{x3bb} }w)$
for some
$k\in \mathbb {Z}_{>0}$
.
Observe that if
$\unicode{x3bb} =({a}/{b})\in \mathbb {Q}^*$
with
$a\in \mathbb {Z}^*$
,
$b\in \mathbb {Z}_{>0}$
, then any directed harmonic current is invariant under the action of
$(z,w)\mapsto (z,e^{2b\pi i \unicode{x3bb} }w)$
, hence is periodic. But when
$\unicode{x3bb} \notin \mathbb {Q}^*$
, the periodicity is a non-trivial assumption. It does not follow from the ergodicity of irrational rotation because the current is only continuous on leaf parameters
$(u,v)$
for each fixed
$\alpha $
. It may not be continuous in variables
$(z,w)$
.
We are in a position to state our second main result.
Theorem 1.5. Using the same notation as above, the Lelong number of T at the singularity is
$0$
when
$\unicode{x3bb} <0$
and the current is periodic, in particular, when
$\unicode{x3bb} \in \mathbb {Q}_{<0}$
.
It remains open to determine the possible Lelong number values of non-periodic T when
$\unicode{x3bb} <0$
is irrational.
Section 2 reviews the definition of singular holomorphic foliations, directed harmonic currents, the mass and the Lelong number. Section 3 describes the topology of leaves near linearizable non-hyperbolic singularities, resolves the ambiguity of normalizing harmonic functions on the leaves and provides practical formulas for the mass and the Lelong number. Section 4 calculates the Lelong number when
$\unicode{x3bb} \in \mathbb {Q}_{>0}$
. Section 5 calculates the Lelong number when
$\unicode{x3bb} \in \mathbb {R}_{>0}\backslash \mathbb {Q}$
, with an analysis on Poisson integrals of non-periodic currents. Section 6 calculates the Lelong number when
$\unicode{x3bb} <0$
, assuming that the currents are periodic.
2 Background
2.1 Singularities of holomorphic foliations
To start with, recall the definition of singular holomorphic foliation on a complex surface M.
Definition 2.1. Let
$E\subset M$
be some closed subset, possibly empty, such that
$\overline {M\backslash E}=M$
. A singular holomorphic foliation
$(M,E,\mathscr {F}{\kern1.5pt})$
consists of a holomorphic atlas
$\{(\mathbb {U}_i,\Phi _i)\}_{i\in I}$
on
$M\backslash E$
which satisfies the following conditions.
-
(1) For each
$i\in I$ ,
$\Phi _i: \mathbb {U}_i\rightarrow \mathbb {B}_i\times \mathbb {T}_i$ is a biholomorphism, where
$\mathbb {B}_i$ and
$\mathbb {T}_i$ are domains in
$\mathbb {C}$ .
-
(2) For each pair
$(\mathbb {U}_i,\Phi _i)$ and
$(\mathbb {U}_j,\Phi _j)$ with
$\mathbb {U}_i\cap \mathbb {U}_j\neq \emptyset $ , the transition map
$$ \begin{align*} \Phi_{ij}:=\Phi_i\circ\Phi_j^{-1}:\Phi_j(\mathbb{U}_i\cap\mathbb{U}_j)\rightarrow\Phi_i(\mathbb{U}_i\cap\mathbb{U}_j) \end{align*} $$
$$ \begin{align*} \Phi_{ij}(b,t)=(\Omega(b,t),\Lambda(t)), \end{align*} $$
$(b,t)$ are the coordinates on
$\mathbb {B}_j\times \mathbb {T}_j$ , and the functions
$\Omega $ ,
$\Lambda $ are holomorphic, with
$\Lambda $ independent of b.
Each open set
$\mathbb {U}_i$
is called a flow box. For each
$c\in \mathbb {T}_i$
, the Riemann surface
$\Phi _i^{-1}\{t=c\}$
in
$\mathbb {U}_i$
is called a plaque. Property (2) above ensures that in the intersection of two flow boxes, plaques are mapped to plaques.
A leaf L is a minimal connected subset of M such that if L intersects a plaque, it contains that plaque. A transversal is a Riemann surface immersed in M which is transverse to each leaf of M.
The local theory of singular holomorphic foliations is closely related to holomorphic vector fields. One recalls some basic concepts in
$\mathbb {C}^2$
; see [Reference Brunella5, Reference Fornæss and Sibony11, Reference Nguyên17, Reference Nguyên18].
Definition 2.2. Let
$Z=P(z,w){\partial }/{\partial z}+Q(z,w){\partial }/{\partial w}$
be a holomorphic vector field defined in a neighbourhood
$\mathbb {U}$
of
$(0,0)\in \mathbb {C}^2$
. One says that Z is:
-
(1) singular at
$(0,0)$ if
$P(0,0)=Q(0,0)=0$ ;
-
(2) linear if it can be written as
$$ \begin{align*} Z=\unicode{x3bb}_1 z\frac{\partial}{\partial z}+\unicode{x3bb}_2 w \frac{\partial}{\partial w} \end{align*} $$
$\unicode{x3bb} _1$ ,
$\unicode{x3bb} _2\in \mathbb {C}$ are not simultaneously zero;
-
(3) linearizable if it is linear after a biholomorphic change of coordinates.
Suppose the holomorphic vector field
$Z=P({\partial }/{\partial z})+Q({\partial }/{\partial w})$
admits a singularity at the origin. Let
$\unicode{x3bb} _1$
,
$\unicode{x3bb} _2$
be the eigenvalues of the Jacobian matrix
$\textstyle (\! \begin {smallmatrix} P_z & P_w \\ Q_z & Q_w \end {smallmatrix} \!)$
at the origin.
Definition 2.3. The singularity is non-degenerate if both
$\unicode{x3bb} _1$
,
$\unicode{x3bb} _2$
are non-zero. This condition is biholomorphically invariant.
In this paper, all singularities are assumed to be non-degenerate. Then the foliation defined by integral curves of Z has an isolated singularity at
$0$
. Degenerate singularities are studied in [Reference Brunella5]. Seidenberg’s reduction theorem [Reference Seidenberg21] shows that degenerate singularities can be resolved into non-degenerate ones after finitely many blow-ups.
Definition 2.4. A singularity of Z is hyperbolic if the quotient
$\unicode{x3bb} :=({\unicode{x3bb} _1}/{\unicode{x3bb} _2})\in \mathbb {C}\backslash \mathbb {R}$
. It is non-hyperbolic if
$\unicode{x3bb} \in \mathbb {R}^*$
. It is in the Poincaré domain if
$\unicode{x3bb} \in \mathbb {C}\backslash \mathbb {R}_{\leqslant 0}$
. It is in the Siegel domain if
$\unicode{x3bb} \in \mathbb {R}_{<0}$
.
One can verify that the quotient is unchanged by multiplication of Z by any non-vanishing holomorphic function.
One could consider
$\unicode{x3bb} ^{-1}={\unicode{x3bb} _2}/{\unicode{x3bb} _1}$
instead of
$\unicode{x3bb} $
, but then
$\unicode{x3bb} \notin \mathbb {R}$
if and only if
${\unicode{x3bb} ^{-1}\notin \mathbb {R}}$
. Thus, the notion of hyperbolicity is well defined. Also, being non-hyperbolic, in the Poincaré domain or Siegel domain, is well defined. The complex number
$\unicode{x3bb} $
will be called an eigenvalue of Z at the singularity, with an inessential abuse due to this exchange
$\unicode{x3bb} \leftrightarrow \unicode{x3bb} ^{-1}$
. The unordered pair
$\{\unicode{x3bb} ,\unicode{x3bb} ^{-1}\}$
is invariant under local biholomorphic changes of coordinates.
Consider a holomorphic foliation
$(M,E,\mathscr {F}{\kern1.5pt})$
where E is discrete. When one tries to linearize a vector field near an isolated non-degenerate singularity, one has to divide power series coefficients by quantities
$m_1+\unicode{x3bb} m_2-1$
and
$m_1+\unicode{x3bb} m_2-\unicode{x3bb} $
where
$m_1$
,
$m_2\in \mathbb {Z}_{\geqslant 0}$
with
$m_1+m_2\geqslant 2$
. To ensure convergence, these quantities have to be non-zero and not too close to zero.
These quantities are non-zero if and only if
$\unicode{x3bb} \notin \mathbb {Q}_{\neq 1}$
. They do not have
$0$
as a limit if and only if
$\unicode{x3bb} \notin \mathbb {R}_{\leqslant 0}$
, that is, the singularity is in the Poincaré domain.
We are now ready to state some linearization results in
$\mathbb {C}^2$
.
Theorem 2.5. (Poincaré; see [Reference Arnold and Ilyashenko2, Ch. 4, §1.2, pp. 72])
A singular holomorphic vector field in
$\mathbb {C}^2$
is holomorphically equivalent to its linear part if its eigenvalue
$\unicode{x3bb} \in (\mathbb {C}\backslash \mathbb {R}_{\leqslant 0})\backslash \mathbb {Q}_{\neq 1}$
.
Remark 2.6. The linear part of a singular holomorphic vector field is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu5.png?pub-status=live)
for some
$a,b,c,d\in \mathbb {C}$
with
$ad-bc\neq 0$
if the singularity is assumed to be non-degenerate. It is non-linearizable if and only if the Jordan normal form of the Jacobian matrix
$\textstyle (\! \begin {smallmatrix} a & b\\ c & d \end {smallmatrix} \!)$
has a rank-2 block
$\textstyle (\! \begin {smallmatrix} a & 1\\ 0 & a \end {smallmatrix} \!)$
with
$a\neq 0$
. In this case
$\unicode{x3bb} =1$
, hence Poincaré’s theorem holds. The vector field is holomorphically equivalent to its linear part
$(az+w){\partial }/{\partial z}+aw({\partial }/{\partial w})$
, but is not linearizable.
For the resonant case
$\unicode{x3bb} \in \mathbb {Q}_{\neq {1}}$
and the degenerate case, one may use the Poincaré–Dulac normal form [Reference Arnold and Ilyashenko2, Ch. 3, §3.2, pp. 54].
In particular, all hyperbolic singularities are linearizable.
To get linearization for
$\unicode{x3bb} $
in the Siegel domain, the following result assumes the more advanced Brjuno condition.
Theorem 2.7. (Brjuno [Reference Arnold and Ilyashenko2, Reference Brjuno4])
A singular holomorphic vector field with a non-resonant linear part is holomorphically linearizable if its eigenvalue
$\unicode{x3bb} \in \mathbb {R}$
satisfies the condition
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu6.png?pub-status=live)
where
$p_n/q_n$
is the nth approximant of the continued fraction expansion of
$\unicode{x3bb} $
.
The golden ratio
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu7.png?pub-status=live)
is a Brjuno number. Indeed, any irrational number whose continued fraction expansion ends with a string of 1s
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu8.png?pub-status=live)
is a Brjuno number. The Brjuno numbers are dense in
$\mathbb {R}\backslash \mathbb {Q}$
. See [Reference Lee14, Propositions 1.2 and 1.3].
In this paper, all singularities are assumed to be linearizable.
2.2 Directed harmonic currents
Let
$(\mathbb {D}^2,\mathscr {F},\{0\})$
be a holomorphic foliation on the unit bidisc
$\mathbb {D}^2$
defined by the linear vector field
$Z=z{\partial }/{\partial z}+\unicode{x3bb} w({\partial }/{\partial w})$
with
$\unicode{x3bb} \in \mathbb {R}^*$
. One may assume
$0<|\unicode{x3bb} |\leqslant 1$
after switching z and w if necessary. There are always two separatrices
$\{z=0\}$
and
$\{w=0\}$
. Other leaves can be parametrized as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn1.png?pub-status=live)
where
$\zeta =u+iv\in \mathbb {C}$
. The map
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu9.png?pub-status=live)
is locally biholomorphic. Here
$\alpha $
is the coordinate on the transversal and
$\zeta $
is the coordinate on leaves. It is not injective since
$\Psi (\zeta +2\pi ,\alpha )=\Psi (\zeta ,\alpha e^{2\pi i\unicode{x3bb} })$
.
Two numbers
$\alpha $
,
$\beta \in \mathbb {C}^*$
are equivalent
$\alpha \sim \beta $
if
$\beta =e^{2k\pi i \unicode{x3bb} }\alpha $
for some
$k\in \mathbb {Z}$
. The following statements are equivalent:
-
•
$\alpha \sim \beta $ ;
-
•
$L_\alpha =L_\beta $ ;
-
•
$\psi _\alpha =\psi _\beta \circ (\text {translation of }2k\pi )$ for some
$k\in \mathbb {Z}$ .
Let
$\mathscr {C}_{\mathscr {F}}$
(respectively,
$\mathscr {C}_{\mathscr {F}}^{1,1}$
) denote the space of functions (respectively, forms of bidegree
$(1,1)$
) defined on leaves of the foliation which are compactly supported on
$M\backslash E$
, leafwise smooth and transversally continuous. A form
$\iota \in \mathscr {C}_{\mathscr {F}}^{1,1}$
is said to be positive if its restriction to every plaque is a positive (1,1)-form.
A directed harmonic current T on
$\mathscr {F}$
is a continuous linear form on
$\mathscr {C}_{\mathscr {F}}^{1,1}$
satisfying the following two conditions:
-
(1)
$i\partial \bar {\partial } T=0$ in the weak sense, that is,
$T(i\partial \bar {\partial }f)=0$ for all
$f\in \mathscr {C}_{\mathscr {F}}$ , where in the expression
$i\partial \bar {\partial }f$ one only considers
$\partial \bar {\partial }$ along the leaves;
-
(2) T is positive, that is,
$T(\iota )\geqslant 0$ for all positive forms
$\iota \in \mathscr {C}_{\mathscr {F}}^{1,1}$ .
It is well known (see, for example, [Reference Berndtsson and Sibony3, Reference Dinh, Nguyên and Sibony6, Reference Fornæss and Sibony11]) that a directed harmonic current T on a flow box
$\mathbb {U}\cong \mathbb {B}\times \mathbb {T}$
can be locally expressed as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn2.png?pub-status=live)
The
$h_\alpha $
are non-negative harmonic functions on the local leaves
$P_\alpha $
and
$\mu $
is a Borel measure on the transversal
$\mathbb {T}$
. If
$h_\alpha =0$
at some point on
$P_\alpha $
, then by the mean value theorem
$h_\alpha \equiv 0$
. For all such
$\alpha \in \mathbb {T}$
, we replace
$h_\alpha $
by the constant function
$1$
and we set
$d\mu (\alpha )=0$
. Thus, we get a new expression of T where
$h_\alpha>0$
for all
$\alpha \in \mathbb {T}$
.
Such an expression is not unique since
$T=\int _{\alpha \in \mathbb {T}}(h_\alpha g(\alpha ))[P_\alpha ](({1}/{g(\alpha )})\, d\mu (\alpha ))$
for any measurable positive function
$g:\mathbb {T}\rightarrow \mathbb {R}_{>0}$
which is finite and non-zero almost everywhere. The expression is unique after normalization, which means that for each
$\alpha \in \mathbb {T}$
one fixes
$h_\alpha (z_0,w_0)=1$
at some point
$(z_0,w_0)\in P_\alpha $
.
Each harmonic function
$h_\alpha $
on the leaf
$V_\alpha $
can be pulled back by the parametrization
$\Psi $
as the harmonic function
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu10.png?pub-status=live)
The domain of definition for u, v will be precisely described later in this section.
In §1 the notion of periodic current was introduced. Here is an equivalent characterization.
Proposition 2.8. A directed harmonic current T is periodic if and only if there exists some
$k\in \mathbb {Z}_{>0}$
such that
$H_\alpha (u+2 k\pi ,v)=H_\alpha (u,v)$
for all
$u,v$
and for
$\mu $
-almost all
$\alpha $
.
Proof. By definition T is invariant under
$(z,w)\mapsto (z,e^{2k\pi i \unicode{x3bb} }w)$
for some
$k\in \mathbb {Z}_{>0}$
, which is equivalent to
$H_\alpha (u+2 k\pi ,v)=H_\alpha (u,v)$
for all
$u,v$
and
$\mu $
-almost all
$\alpha $
.
A current T of the form (2) is
$dd^c$
-closed on
$\mathbb {D}^2\backslash \{0\}$
. But its trivial extension
$\tilde {T}$
across the singularity
$0$
is not necessarily
$dd^c$
-closed on
$\mathbb {D}^2$
. It is true when T is compactly supported, for example when T is a localization of a current on a compact manifold, by the following argument (see [Reference Dinh, Nguyên and Sibony6, Lemma 2.5] for details).
Let T be a directed harmonic current on
$M\backslash E$
, where M is a compact complex manifold and E is a finite set. The current T can be extended by zero through E in order to obtain the positive current
$\tilde T$
on M. Next, we apply the following result.
Theorem 2.9. (Alessandrini and Bassanelli [Reference Alessandrini and Bassanelli1, Theorem 5.6])
Let
$\Omega $
be an open subset of
$\mathbb {C}^n$
and Y an analytic subset of
$\Omega $
of dimension less than p. Suppose T is a negative current of bidimension
$(p,p)$
on
$\Omega \backslash Y$
such that
$dd^c T\geqslant 0$
. Then the following assertions hold.
-
(1) The mass of T near Y is locally finite. In particular, T admits a trivial extension by
$0$ across Y, denoted by
$\tilde {T}$ .
-
(2)
$dd^c\tilde {T}\geqslant 0$ on
$\Omega $ .
Here
$-T$
is a negative current of bidimension
$(1,1)$
on
$M\backslash E$
with
$dd^c (-T)\geqslant 0$
and E has dimension
$0$
. So for the trivial extension
$\tilde {T}$
on M one has
$dd^c(-\tilde {T})\geqslant 0$
. Moreover,
$\tilde {T}$
is compactly supported since M is compact. Thus
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu11.png?pub-status=live)
Combining with
$dd^c\tilde {T}\leqslant 0$
from the extension theorem, one concludes that
$dd^c\tilde {T}=0$
on M. Thus, locally near any singularity, the trivial extension
$\tilde {T}$
is
$dd^c$
-closed.
Let
$\beta :=idz\wedge d\bar {z}+idw\wedge d\bar {w}$
be the standard Kähler form on
$\mathbb {C}^2$
. The mass of T on a domain
$U\subset \mathbb {D}^2$
is denoted by
$\|T\|_U:=\int _U T\wedge \beta $
. In this paper, all currents are assumed to have finite mass on
$\mathbb {D}^2$
.
Definition 2.10. (See [Reference Nguyên19, §2.4])
Let T be a directed harmonic current on
$(\mathbb {D}^2,\mathscr {F},\{0\})$
. We define the Lelong number by the limit
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu12.png?pub-status=live)
The limit can be infinite when the trivial extension
$\tilde {T}$
across the origin is not
$dd^c$
-closed [Reference Nguyên19, Example 2.11]. When
$\tilde {T}$
is
$dd^c$
-closed, the following theorem ensures the finiteness.
Theorem 2.11. (Skoda [Reference Skoda22])
Let T be a positive
$dd^c$
-closed
$(1,1)$
-current in
$\mathbb {D}^2$
. Then the function
$r\mapsto {1}/{\pi r^2}\|T\|_{r\mathbb {D}^2}$
is increasing with
$r\in (0, 1]$
.
In our case, the function
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu13.png?pub-status=live)
is increasing with
$r\in (0, 1]$
. In particular,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu14.png?pub-status=live)
In this paper, the symbols
$\lesssim $
and
$\gtrsim $
stand for inequalities up to a multiplicative positive constant depending only on
$\unicode{x3bb} $
. We write
$\approx $
when both inequalities are satisfied.
3 Parametrization of leaves
Recall the parametrization of an arbitrary leaf
$L_\alpha $
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu15.png?pub-status=live)
To calculate the mass
$\|T\|_{\mathbb {D}^2}$
and the Lelong number
$\mathscr {L}(T,0)$
, we shall study
$\Psi ^{-1}(r \mathbb {D}^2)$
for
$r\in (0,1]$
. Define
$P_\alpha :=L_\alpha \cap \mathbb {D}^2$
and
$P_\alpha ^{(r)}:=L_\alpha \cap r \mathbb {D}^2$
. Define
$\log ^+(x):=\max \{0,\log (x)\}$
for
$x>0$
.
Lemma 3.1. The range of
$(u,v)$
for a point
$(z,w)\in P_\alpha $
and
$P_{\alpha }^{(r)}$
is an upper half-plane when
$\unicode{x3bb}>0$
, or a horizontal strip when
$\unicode{x3bb} <0$
. More precisely:
-
(1) when
$\unicode{x3bb}>0$ ,
$$ \begin{align*} (z,w)\in P_\alpha & \Longleftrightarrow\, v>\frac{\log^+|\alpha|}{\unicode{x3bb}},\\ (z,w)\in P_\alpha^{(r)} & \Longleftrightarrow \left\{ \begin{aligned} &v>\frac{\log|\alpha|-\log r}{\unicode{x3bb}} & (|\alpha|\geqslant r^{1-\unicode{x3bb}}),\\ &v>-\log r & (|\alpha|<r^{1-\unicode{x3bb}}); \end{aligned} \right. \end{align*} $$
-
(2) when
$\unicode{x3bb} <0$ ,
$P_\alpha =\emptyset $ for
$|\alpha |\geqslant 1$ ,
$P_\alpha ^{(r)}=\emptyset $ for
$|\alpha |\geqslant r^{1-\unicode{x3bb} }$ and for the other
$\alpha $ ,
$$ \begin{align*} (z,w)\in P_\alpha & \Longleftrightarrow\, 0<v<\frac{\log|\alpha|}{\unicode{x3bb}},\\ (z,w)\in P_\alpha^{(r)} & \Longleftrightarrow -\log r<v<\frac{\log|\alpha|-\log r}{\unicode{x3bb}}. \end{align*} $$
Proof. Recall that
$(z,w)=(e^{-v+i u},\alpha e^{-\unicode{x3bb} v+i \unicode{x3bb} u})$
on
$L_{\alpha }$
. So for any
$r\in (0,1]$
,
$(z,w)\in P_\alpha ^{(r)}$
if and only if both
$|z|=e^{-v}<r$
and
$|w|=|\alpha | e^{-\unicode{x3bb} v}<r$
.
When
$\unicode{x3bb}>0$
one has
$v>-\log r$
and
$v>({\log |\alpha |-\log r})/{\unicode{x3bb} }$
. In particular, for
$r=1$
, one has
$v>0$
and
$v>{\log |\alpha |}/{\unicode{x3bb} }$
.
When
$\unicode{x3bb} <0$
one has
$-\log r<v<({\log |\alpha |-\log r})/{\unicode{x3bb} }$
. In particular, for
$r=1$
, one has
$0<v<{\log |\alpha |}/{\unicode{x3bb} }$
. If there is no solution for v then
$P_{\alpha }^{(r)}=\emptyset $
.
When
$\unicode{x3bb}>0$
, the range of v is unbounded for each fixed
$\alpha \in \mathbb {C}^*$
. See Figures 1 and 2.
When
$\unicode{x3bb} <0$
, the range of v is bounded for each fixed
$\alpha $
. See Figures 3 and 4.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig1.png?pub-status=live)
Figure 1 The region of
$(|\alpha |,v)$
for
$P_\alpha $
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig2.png?pub-status=live)
Figure 2 The region of
$(|\alpha |,v)$
for
$P_\alpha ^{(r)}$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig3.png?pub-status=live)
Figure 3 The region of
$(|\alpha |,v)$
for
$P_\alpha $
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig4.png?pub-status=live)
Figure 4 The region of
$(|\alpha |,v)$
for
$P_\alpha ^{(r)}$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig5.png?pub-status=live)
Figure 5 Case
$|\alpha |<1$
.
3.1 Positive case
$\unicode{x3bb}>0$
For any
$\alpha \in \mathbb {C}^*$
fixed, the leaf
$L_\alpha $
is contained in a real three-dimensional Levi flat CR manifoldFootnote
1
$|w|=|\alpha | |z|^{\unicode{x3bb} }$
, which can be viewed as a curve in
$|z|=e^{-v}$
,
$|w|=|\alpha | e^{-\unicode{x3bb} v}$
coordinates. The norms
$|z|$
and
$|w|$
depend only on v. When
$v\rightarrow +\infty $
, the point on the leaf tends to the singularity
$(0,0)$
described by Figures 5 and 6.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig6.png?pub-status=live)
Figure 6 Case
$|\alpha |\geqslant 1$
.
If one fixes some
$v=-\log r$
, then
$|z|=r$
and
$|w|=|\alpha | r^\unicode{x3bb} $
is fixed. The set
$\mathbb {T}^2_r:=\{(z,w)\in \mathbb {D}^2:|z|=r,|w|=|\alpha | r^\unicode{x3bb} \}$
is a torus and the intersection of the leaf
$L_\alpha $
with this torus is a smooth curve
$L_{\alpha ,r}:=L_\alpha \cap \mathbb {T}^2_r$
.
When
$\unicode{x3bb} \in \mathbb {Q}$
, this curve
$L_{\alpha ,r}$
is closed. See Figure 7.
When
$\unicode{x3bb} \notin \mathbb {Q}$
, this curve
$L_{\alpha ,r}$
is dense on the torus
$\mathbb {T}_r^2$
. See Figures 8 and 9.
In this case the two curves
$L_{\alpha ,r}$
and
$L_{\alpha e^{2\pi i \unicode{x3bb} },r}$
are two different parametrizations of the same image. The dashed curve in Figure 8 is not only the image of
$L_{\alpha ,r}$
for
$u\in [2\pi ,4\pi )$
but also the image of
$L_{\alpha e^{2\pi i \unicode{x3bb} },r}$
for
$u\in [0,2\pi )$
. This raises ambiguity while normalizing harmonic functions on a leaf
$L_\alpha $
.
Such ambiguity can be resolved once one restricts everything to an open subset
$U_\epsilon :=\{(z,w)\in \mathbb {D}^2~|~{\textrm {arg}}(z)\in (0,2\pi -\epsilon ),z\neq 0,w\neq 0\}$
for some fixed
$\epsilon \in [0,\pi )$
. Any leaf
$L_\alpha $
on
$U_\epsilon $
decomposes into a disjoint union of infinitely many components:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu18.png?pub-status=live)
For example, in Figure 10, the curve and the dashed curve are two distinct components of
$L_{1,1}\cup U_{\epsilon}$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig7.png?pub-status=live)
Figure 7 A closed curve on a torus.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig8.png?pub-status=live)
Figure 8 Two loops.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig9.png?pub-status=live)
Figure 9 Twenty loops.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig10.png?pub-status=live)
Figure 10 Two components of
$L_{1,1}\cup U_{\epsilon}$
.
Such a parametrization is yet not unique. For example, for any
$k_0\in \mathbb {Z}$
one can parametrize
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu19.png?pub-status=live)
The parametrization is unique once one fixes
$k_0$
, for example,
$k_0=0$
. I remark for the time being that all other choices of
$k_0$
will be used for analysing non-periodic currents in §5.2.
3.2 Resolving ambiguity in the irrational case
Let
$\unicode{x3bb} \notin \mathbb {Q}$
. Let T be a harmonic current directed by
$\mathscr {F}$
. Then
$T|_{P_\alpha }$
has the form
$h_\alpha (z,w)[P_\alpha ]$
. One may assume that
$h_\alpha $
is nowhere 0 for every
$\alpha $
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu20.png?pub-status=live)
This is a positive harmonic function for
$\mu $
-almost all
$\alpha \in \mathbb {C}^*$
defined in a neighbourhood of the upper half-plane
$\mathbb {H}=\{(u+iv)\in \mathbb {C}~|~v>0\}$
, determined by the Poisson integral formula
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu21.png?pub-status=live)
One can normalize
$H_\alpha $
by setting
$H_\alpha (0)=1$
. But by doing so one may normalize data over the same leaf for multiple times. Indeed, any pair of equivalent numbers
$\alpha \sim \beta $
in
$\mathbb {C}^*$
,
$\beta =\alpha e^{2k\pi i \unicode{x3bb} }$
, may provide us with two different normalizations
$H_{\alpha }$
and
$H_{\beta }$
on the same leaf
$L_{\alpha }=L_{\beta }$
. A major task is to find formulas for the mass and the Lelong number independent by the choice of normalization.
The ambiguity is described by the following proposition.
Proposition 3.2. If
$\beta =\alpha e^{2k \pi i \unicode{x3bb} }$
for some
$k\in \mathbb {Z}$
, then the two normalized positive harmonic functions
$H_\alpha $
and
$H_\beta $
satisfy
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu22.png?pub-status=live)
In other words, they differ by a translation and a multiplication by a non-zero constant.
Proof. When
$|\alpha |<1$
, by definition
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu23.png?pub-status=live)
Thus, the normalized harmonic function is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu24.png?pub-status=live)
and for the same reason
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu25.png?pub-status=live)
The two functions
$h_\alpha $
and
$h_\beta $
are the positive harmonic coefficient of T on the same leaf
$L_\alpha =L_\beta $
, hence they differ up to multiplication by a positive constant
$C>0$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu26.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu27.png?pub-status=live)
When
$u=2k \pi $
and
$v=0$
one has
$H_\alpha (2k \pi )={h_\beta (1,\beta )}/{h_\beta (1,\alpha )}$
. Thus, one gets the equality. The proof for the case
$|\alpha |>1$
is similar.
Take the open subset
$U:=\{(z,w)\in \mathbb {D}^2~|~z\notin \mathbb {R}_{\geqslant 0},w\neq 0\}$
. See Figures 11 and 12.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig11.png?pub-status=live)
Figure 11 Domain U in coordinates
$(z,w)$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig12.png?pub-status=live)
Figure 12 Domain U in coordinates
$(u,v)$
.
Any leaf
$L_\alpha $
in U is a disjoint union of infinitely many components. Once
$\alpha $
is fixed, there is a one-to-one correspondence between these components and strips in Figure 12.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu28.png?pub-status=live)
Normalizing
$H_{\alpha e^{2k\pi i\unicode{x3bb} }}$
on
$\tilde {L}_{\alpha e^{2k\pi i\unicode{x3bb} }}$
avoids ambiguity. Thus, the mass
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu29.png?pub-status=live)
for some positive measure
$\mu $
on
$\mathbb {C}^*$
. Here,
$\|\psi _\alpha '\|^2$
is the jacobian coming from the
$(1,1)$
-form
$i\partial \bar {\partial }(|z|^2+|w|^2)$
on
$L_\alpha $
after a change of coordinates and a translation on v:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn3.png?pub-status=live)
Since H is harmonic in a neighbourhood of
$\mathbb {H}$
, it is continuous in
$\mathbb {H}$
. So
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu30.png?pub-status=live)
Thus, we can express the mass by a formula independent of the choice of normalization
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu31.png?pub-status=live)
Lemma 3.3. For each
$k_0\in \mathbb {Z}$
fixed,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn4.png?pub-status=live)
Proof. The disjoint union
$L_\alpha \cap U=\bigcup \nolimits _{k\in \mathbb {Z}}\tilde {L}_{\alpha e^{2k\pi i\unicode{x3bb} }}$
can be parametrized in many other ways. For instance,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu32.png?pub-status=live)
By the same argument as above one concludes.
3.3 Negative case
$\unicode{x3bb} <0$
As in the positive case, for any
$\alpha \in \mathbb {C}^*$
fixed, the leaf
$L_\alpha $
is contained in a real three-dimensional analytic Levi-flat CR manifold
$|w|=|\alpha | |z|^{\unicode{x3bb} }$
, which can be viewed as a curve in
$|z|,|w|$
coordinates. The norms
$|z|$
and
$|w|$
depend only on v.
The difference is that in the negative case, no leaf
$L_\alpha $
tends to the singularity
$(0,0)$
. For r sufficiently small, the leaf
$L_\alpha $
is outside of
$r \mathbb {D}^2$
. See Figure 13.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig13.png?pub-status=live)
Figure 13 Case
$\unicode{x3bb} <0$
.
Like the positive case
$\unicode{x3bb}>0$
, when one fixes
$|z|=r$
for some
$r\in (0,1)$
,
$|w|=|\alpha | |z|^\unicode{x3bb} $
is uniquely determined and the real two-dimensional leaf
$L_\alpha $
becomes a real 1-dimensional curve
$L_{\alpha ,r}:=L_\alpha \cap \mathbb {T}^2_r$
on the torus
$\mathbb {T}^2_r:=\{(z,w)\in \mathbb {D}^2~|~|z|=r,|w|=|\alpha | r^\unicode{x3bb} \}$
. It is a closed curve if
$\unicode{x3bb} \in \mathbb {Q}$
, and a dense curve on
$\mathbb {T}^2_r$
if
$\unicode{x3bb} \notin \mathbb {Q}$
.
Let T be a harmonic current directed by
$\mathscr {F}$
. Then
$T|_{P_\alpha }$
has the form
$h_\alpha (z,w)[P_\alpha ]$
. Let
$H_\alpha :=h_\alpha \circ \psi _\alpha (u+iv)$
. It is a positive harmonic function for
$\mu $
-almost all
$\alpha \in \mathbb {D}^*$
defined on a neighbourhood of a horizontal strip
$\{(u,v)\in \mathbb {R}^2~|~0<v<{\log |\alpha |}/{\unicode{x3bb} }\}$
.
As in the case
$\unicode{x3bb}>0$
, one only calculates the mass on an open subset
$U:=\{(z,w)\in \mathbb {D}^2~|~z\notin \mathbb {R}_{\geqslant 0},w\neq 0\}$
. For each
$\alpha \in \mathbb {D}^*$
one normalizes
$H_\alpha $
by setting
$H_\alpha (0)=1$
to fix the expression
$T:=\int h_\alpha [P_\alpha ]\, d\mu (\alpha )$
. Similarly to Lemma 3.3, for each
$k_0\in \mathbb {Z}$
fixed,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu33.png?pub-status=live)
These formulas will be calculated in later sections.
4 Positive rational case:
$\unicode{x3bb} =({a}/{b})\in \mathbb {Q}$
,
$\unicode{x3bb} \in (0,1]$
Write
$\unicode{x3bb} ={a}/{b}$
where
$a,b\in \mathbb {Z}_{\geqslant 1}$
are coprime. Then in
$\mathbb {D}^2$
, for any
$\alpha \in \mathbb {C}^*$
, the union
$L_\alpha \cup \{0\}$
is the algebraic curve
$\{w^b=\alpha ^b z^a\}\cap \mathbb {D}^2$
. In other words, every leaf is a separatrix. In this section it will be shown that any directed harmonic current T has non-zero Lelong number.
The parametrization map
$\psi _\alpha (\zeta ):=(e^{i\zeta },\alpha e^{i\unicode{x3bb} \zeta })$
is now periodic:
$\psi _\alpha (\zeta +2\pi b)=\psi _\alpha (\zeta )$
. Let T be a directed harmonic current. Then
$T|_{P_\alpha }$
has the form
$h_\alpha (z,w)[P_\alpha ]$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu34.png?pub-status=live)
This is a positive harmonic function for
$\mu $
-almost all
$\alpha \in \mathbb {C}^*$
defined in a neighbourhood of the upper half-plane
$\mathbb {H}:=\{(u+iv)\in \mathbb {C}~|~v>0\}$
. Moreover, it is periodic:
$H_\alpha (u+iv)=H_\alpha (u+2\pi b+iv)$
. Periodic harmonic functions can be characterized by the following lemma.
Lemma 4.1. Let
$F(u,v)$
be a harmonic function in a neighbourhood of
$\mathbb {H}$
. If
$F(u,v)=F(u+2\pi b,v)$
for all
$(u,v)\in \mathbb {H}$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu35.png?pub-status=live)
for some
$a_k$
,
$b_k\in \mathbb {R}$
. Moreover, if
$F|_{\mathbb {H}}\geqslant 0$
, then
$a_0,b_0\geqslant 0$
.
Proof. By periodicity
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu36.png?pub-status=live)
for some functions
$A_k(v)$
,
$B_k(v)$
. They are smooth since F is harmonic. Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu37.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu38.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu39.png?pub-status=live)
for some
$a_k$
,
$a_{-k}$
,
$b_k$
,
$b_{-k}\in \mathbb {R}$
. One obtains the equality.
If
$F|_{\mathbb {H}}\geqslant 0$
, then for any
$v\geqslant 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu40.png?pub-status=live)
Thus,
$a_0,b_0\geqslant 0.$
For
$\alpha ,\beta \in \mathbb {C}^*$
, the two maps
$\psi _\alpha $
and
$\psi _\beta $
parametrize the same leaf
$L_\alpha =L_\beta $
if and only if
$\beta =\alpha e^{2\pi i ({k}/{b})}$
for some
$k\in \mathbb {Z}$
, that is
$\alpha $
and
$\beta $
differ from multiplying a bth root of unity. Thus, a transversal can be chosen as the sector
$\mathbb {S}:=\{\alpha \in \mathbb {C}^*~|~{\textrm {arg}}(\alpha )\in [0,{2\pi }/{b})\}$
. One fixes a normalization by setting
$H_\alpha (0)=h_\alpha \circ \psi _\alpha (i({\log ^+|\alpha |}/{\unicode{x3bb} }))=1$
.
The mass of the current T is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu41.png?pub-status=live)
In particular, one calculates the
$(1,1)$
-form
$i\partial \bar {\partial }(|z|^2+|w|^2)$
on
$L_\alpha $
, where
$z=e^{-v+iu},w=\alpha e^{-\unicode{x3bb} v+i\unicode{x3bb} u}$
, using
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu42.png?pub-status=live)
whence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu43.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu44.png?pub-status=live)
By Lemma 4.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn5.png?pub-status=live)
where
$a_0(\alpha )$
,
$b_0(\alpha )$
are positive for
$\mu $
-almost all
$\alpha $
. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu45.png?pub-status=live)
The Lelong number can now be calculated as follows:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu46.png?pub-status=live)
First one analyses the
$a_0(\alpha )$
part. When
$|\alpha |<r^{1-\unicode{x3bb} }$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn6.png?pub-status=live)
is uniformly bounded with respect to
$\alpha $
and r. When
$|\alpha |\geqslant r^{1-\unicode{x3bb} }$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn7.png?pub-status=live)
is also uniformly bounded with respect to
$\alpha $
and r. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu47.png?pub-status=live)
Next one analyses the
$b_0(\alpha )$
part.
Lemma 4.2. The Lelong number of T at
$0$
is finite only if
$b_0(\alpha )=0$
for
$\mu $
-almost all
$\alpha \in \mathbb {S}$
.
Proof. Suppose not, that is,
$\int _{\alpha \in \mathbb {S}}b_0(\alpha )\, d\mu (\alpha )=B_0>0$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu48.png?pub-status=live)
contradicting the finiteness of the Lelong number stated in Theorem 2.11.
Thus, one may assume
$b_0(\alpha )=0$
for
$\mu $
-almost all
$\alpha \in \mathbb {S}$
. Then the Lelong number
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu49.png?pub-status=live)
is strictly positive.
5 Positive irrational case
$\unicode{x3bb} \notin \mathbb {Q}$
,
$\unicode{x3bb} \in (0,1)$
Now
$\{z=0\}$
and
$\{w=0\}$
are the only two separatrices in
$\mathbb {D}^2$
. For each fixed
$\alpha \in \mathbb {C}^*$
, the map
$\psi _\alpha (\zeta )=(e^{i \zeta },\alpha e^{i \unicode{x3bb} \zeta })$
is injective since
$\unicode{x3bb} \notin \mathbb {Q}$
.
5.1 Periodic currents, still a Fourier series
Periodic currents behave similarly to currents in the rational case
$\unicode{x3bb} \in \mathbb {Q}$
. Suppose
$H_\alpha $
is periodic, that is, there is some
$b\in \mathbb {Z}_{\geqslant 1}$
such that
$H_\alpha (u+iv)=H_\alpha (u+2\pi b+iv)$
for any
$u+iv\in \mathbb {H}$
. Periodic harmonic functions are characterized as in (5) of Lemma 4.1.
According to Lemma 3.3, the mass is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu50.png?pub-status=live)
for any
$k_0\in \mathbb {Z}$
, in particular for
$k_0=0,1,\ldots ,b-1$
. Thus, we may calculate
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu51.png?pub-status=live)
which is the same expression as in the case
$\unicode{x3bb} \in \mathbb {Q}_{>0}$
.
Next, the Lelong number is calculated as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu52.png?pub-status=live)
exactly the same expression as in the positive rational case with
$b=1$
. Using the same argument as in Lemma 4.2, one may assume that
$b_0(\alpha )=0$
for
$\mu $
-almost all
$\alpha \in \mathbb {C}^*$
. One concludes that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu53.png?pub-status=live)
The Lelong number is strictly positive, the same as in the case
$\unicode{x3bb} \in \mathbb {Q}\cup (0,1)$
.
5.2 Non-periodic current
For periodic currents, one takes an average among b expressions (4) in the previous section. For non-periodic currents, there is no canonical way of normalization. The key technique is to calculate expressions (4) for all
$k_0\in \mathbb {Z}$
.
The Lelong number is expressed as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu54.png?pub-status=live)
Recall the Poisson integral formula after multiplying by a non-zero constant:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu55.png?pub-status=live)
Using the same argument as in Lemma 4.2, one may assume
${C}_\alpha =0$
for all
$\alpha \in \mathbb {C}^*$
.
Lemma 5.1. For any
$v\geqslant {1}/{\unicode{x3bb} }>1$
and for any
$u\in \mathbb {R}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu56.png?pub-status=live)
Proof. This can be calculated directly:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu57.png?pub-status=live)
Corollary 5.2. For any r such that
$0<r\leqslant e^{-{1}/{\unicode{x3bb} }}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu58.png?pub-status=live)
Figure 14 explains Corollary 5.2. We remark that Corollary 5.2 is true for
$r\in (0,1)$
after a dilation
$(z,w)\mapsto (e^{{1}/{2\unicode{x3bb} }}z,e^{{1}/{2\unicode{x3bb} }}w)$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig14.png?pub-status=live)
Figure 14
${1}/{r^2}$
(The integration on
$v>-\log r$
)
$\approx $
(The value at
$v=-\log r$
).
Proof. The assumption
$0<r\leqslant e^{-{1}/{\unicode{x3bb} }}$
implies
$-\log r\geqslant {1}/{\unicode{x3bb} }$
. Hence, for
$v\geqslant -\log r\geqslant {1}/{\unicode{x3bb} }$
, Lemma 5.1 holds.
First, when
$0<|\alpha |\leqslant r^{1-\unicode{x3bb} }$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu59.png?pub-status=live)
For the same reason, when
$r^{1-\unicode{x3bb} }\leqslant |\alpha |<1$
, which implies
$({\log |\alpha |-\log r})/{\unicode{x3bb} }\geqslant -\log r\geqslant {1}/{\unicode{x3bb} }$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu60.png?pub-status=live)
Finally, when
$|\alpha |\geqslant 1$
one has
${-\log r}/{\unicode{x3bb} }\geqslant -\log r\geqslant {1}/{\unicode{x3bb} }$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu61.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu62.png?pub-status=live)
by inequalities (6) and (7) in the previous subsection. All terms are positive, so the order of taking the limit and integration can change:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu63.png?pub-status=live)
Fix some
$k\in \mathbb {Z}$
,
$k\geqslant 2$
. Define intervals
$I_N$
for all
$N\in \mathbb {Z}$
as follows:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu64.png?pub-status=live)
Thus,
$\mathbb {R}=\bigcup \nolimits _{N\in \mathbb {Z}}I_N$
is a disjoint union.
Lemma 5.3. For any
$u\in (0,2\pi )$
, one has
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu65.png?pub-status=live)
Proof. Elementary.
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu66.png?pub-status=live)
By Lemma 3.3 and Corollary 5.2 after a dilation,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu67.png?pub-status=live)
is the integral of y on any interval of length
$2\pi $
. Since
$I_0$
has length
$(2k-1) 2\pi $
and
$I_N$
has length
$2k\pi $
for
$N\neq 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu68.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu69.png?pub-status=live)
is non-zero.
6 Periodic currents in the negative case
$\unicode{x3bb} <0$
Now we treat the case
$\unicode{x3bb} <0$
. We assume the currents are periodic. Recall that when
$\unicode{x3bb} \in \mathbb {Q}$
all directed currents are periodic. So such currents include all currents for
$\unicode{x3bb} \in \mathbb {Q}_{<0}$
.
Recall the formulas of the mass and of the Lelong number obtained in §3.3, for each
$k_0\in \mathbb {Z}$
fixed:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu70.png?pub-status=live)
We now prove Theorem 1.5. Suppose that there exists some
$b\in \mathbb {Z}_{\leqslant 1}$
such that
$H_{\alpha }(u+iv)=H_{\alpha }(u+2\pi b+iv)$
for all
$\alpha \in \mathbb {D}^*$
and all
$(u,v)$
in a neighbourhood of the strip
$\{(u+iv)\in \mathbb {C}~|~u\in \mathbb {R},v\in [0,{\log |\alpha |}/{\unicode{x3bb} }]\}$
. One proves the following result.
Lemma 6.1. Let
$F(u,v)$
be a positive harmonic function on a neighbourhood of the horizontal strip
$\{(u+iv)\in \mathbb {C}~|~u\in \mathbb {R},v\in [0,C]\}$
for some
$C>0$
. Suppose
$F(u,v)=F(u+2\pi b,v)$
on this strip. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu71.png?pub-status=live)
for some
$a_k,b_k\in \mathbb {R}$
with
$a_0\geqslant 0$
and
$b_0\geqslant 0$
.
Proof. The proof is almost the same as that of Lemma 4.1. Using Fourier series and calculating the Laplacian, one concludes that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu72.png?pub-status=live)
for some
$a_k,b_k,p,q\in \mathbb {R}$
. For any
$v\in [0,C]$
,
$F(u,v)\geqslant 0$
implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu73.png?pub-status=live)
Thus,
$p\geqslant 0$
and
$q\geqslant -C^{-1} p$
. One may write
$p+q v=p (1-C^{-1} v)+(q+C^{-1} p) v$
with
$p=:a_0\geqslant 0$
and
$q+C^{-1} p=:b_0\geqslant 0$
.
For periodic currents one may assume
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqn8.png?pub-status=live)
for some
$a_k(\alpha ),b_k(\alpha )\in \mathbb {R}$
with
$a_0(\alpha )\geqslant 0$
and
$b_0(\alpha )\geqslant 0$
. According to Lemma 3.3, for any
$k_0\in \mathbb {Z}$
, use the Jacobian (3):
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu74.png?pub-status=live)
Next, using
$0=\int _0^{2\pi b}\cos ({ku}/{b})du$
for
$k\neq 0$
and the same for
$\sin ({ku}/{b})$
, let us calculate the average among
$k_0=0,1,\ldots ,b-1$
for the mass
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu75.png?pub-status=live)
and for the Lelong number
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu76.png?pub-status=live)
We introduce the two functions of
$r\in (0,1]$
given by elementary integrals,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu77.png?pub-status=live)
to describe the contributions from the
$a_0(\alpha )$
part and from the
$b_0(\alpha )$
part. Here we recall that every positive linear function of v on
is a sum of
and
$b_0(\alpha)\,v$
with
$a_0(\alpha),b_0(\alpha)\geqslant 0$
. The two summands correspond to the dotted line and the dashed line in Figure 15.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_fig15.png?pub-status=live)
Figure 15 A positive function = a dotted one (gives
$I_a(r)$
) + a dashed one (
$I_b(r)$
).
Then we can express
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu78.png?pub-status=live)
Observe that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu79.png?pub-status=live)
Fix any
$\alpha \in \mathbb {D}^*$
; by definition
$r^2I_a(r)$
and
$r^2I_b(r)$
are increasing for
$r\in (0,1]$
, since the interval of integration
$(-\log r,({\log |\alpha |-\log r})/{\unicode{x3bb} })$
is expanding and the function integrated is positive. In particular, for any
$r\in (0,1]$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu80.png?pub-status=live)
It is more subtle to talk about monotonicity of
$I_a(r)$
and
$I_b(r)$
. We expect upper bounds of
$I_a(r)/I_a(1)$
and
$I_b(r)/I_b(1)$
for
$r\in (0,1]$
which are independent of
$\alpha $
, that is, depend only on
$\unicode{x3bb} $
.
Lemma 6.2. For any
$r\in (0,1)$
and any
$\alpha \in \mathbb {C}$
with
$0<|\alpha |<r^{1-\unicode{x3bb} }<1$
, one has
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu81.png?pub-status=live)
Proof. Differentiation gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu82.png?pub-status=live)
It suffices to show that
$({d}/{dr})I_a(r)>0$
when
$r\in (0,1)$
and
$0<|\alpha |<r^{1-\unicode{x3bb} }$
.
Introduce the new variable
$t:={|\alpha |}/{r^{1-\unicode{x3bb} }}\in (0,1)$
. In the big parentheses, replace
$|\alpha |$
by
$t r^{1-\unicode{x3bb} }$
and
$\log |\alpha |$
by
$\log (t)+(1-\unicode{x3bb} )\log (r)$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu83.png?pub-status=live)
since
$\unicode{x3bb} \in [-1,0)$
implies
$t^{2+{2}/{\unicode{x3bb} }}\geqslant 1$
.
It is not true that
$I_b(r)$
is increasing on
$(0,1]$
, but on a smaller half-neighbourhood of
$0$
, independent of
$\alpha $
, it is increasing. This suffices to give an upper bound for
$I_b(r)/I_b(1)$
.
Lemma 6.3. For any
$r\in (0,e^{{1}/{2 \unicode{x3bb} (1-\unicode{x3bb} )}})$
and any
$\alpha \in \mathbb {C}$
with
$0<|\alpha |<r^{1-\unicode{x3bb} }<1$
, one has
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu84.png?pub-status=live)
Proof. Differentiation gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu85.png?pub-status=live)
It suffices to show that
${d}/{dr}I_b(r)>0$
when
$0<r<e^{{1}/{2 \unicode{x3bb} (1-\unicode{x3bb} )}}$
and
$0<|\alpha |<r^{1-\unicode{x3bb} }$
.
Again, introduce the variable
$t:={|\alpha |}/{r^{1-\unicode{x3bb} }}\in (0,1)$
and replace
$\alpha $
and
$\log |\alpha |$
in the parentheses:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu86.png?pub-status=live)
End of proof of Theorem 1.5.
From the foregoing, the Lelong number is zero:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230604081534035-0432:S0143385722000463:S0143385722000463_eqnu87.png?pub-status=live)
since
$\|T\|_{\mathbb {D}^2}=2 \pi \int _{0<|\alpha |<1}(a_0(\alpha ) I_a(1)+b_0(\alpha ) I_b(1))\, d\mu (\alpha )$
is finite.
Acknowledgements
The author thanks Joël Merker and an anonymous referee for valuable suggestions which help to improve the presentation.