Let
$\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD}\in \mathbb{R}$ and
$s\in \mathbb{N}$ be given. Let
$\unicode[STIX]{x1D6FF}_{x}$ denote the Dirac measure at
$x\in \mathbb{R}$, and let
$\ast$ denote convolution. If
$\unicode[STIX]{x1D707}$ is a measure,
$\unicode[STIX]{x1D707}^{\star }$ is the measure that assigns to each Borel set
$A$ the value
$\overline{\unicode[STIX]{x1D707}(-A)}$. If
$u\in \mathbb{R}$, we put
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},u}=e^{iu(\unicode[STIX]{x1D6FC}-\unicode[STIX]{x1D6FD})/2}\unicode[STIX]{x1D6FF}_{0}-e^{iu(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD})/2}\unicode[STIX]{x1D6FF}_{u}$. Then we call a function
$g\in L^{2}(\mathbb{R})$ a generalized
$(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$-difference of order
$2s$ if for some
$u\in \mathbb{R}$ and
$h\in L^{2}(\mathbb{R})$ we have
$g=[\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},u}+\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},u}^{\star }]^{s}\ast h$. We denote by
${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ the vector space of all functions
$f$ in
$L^{2}(\mathbb{R})$ such that
$f$ is a finite sum of generalized
$(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$-differences of order
$2s$. It is shown that every function in
${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ is a sum of
$4s+1$ generalized
$(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$-differences of order
$2s$. Letting
$\widehat{f}$ denote the Fourier transform of a function
$f\in L^{2}(\mathbb{R})$, it is shown that
$f\in {\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ if and only if
$\widehat{f}$ “vanishes” near
$\unicode[STIX]{x1D6FC}$ and
$\unicode[STIX]{x1D6FD}$ at a rate comparable with
$(x-\unicode[STIX]{x1D6FC})^{2s}(x-\unicode[STIX]{x1D6FD})^{2s}$. In fact,
${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ is a Hilbert space where the inner product of functions
$f$ and
$g$ is
$\int _{-\infty }^{\infty }(1+(x-\unicode[STIX]{x1D6FC})^{-2s}(x-\unicode[STIX]{x1D6FD})^{-2s})\widehat{f}(x)\overline{\widehat{g}(x)}\,dx$. Letting
$D$ denote differentiation, and letting
$I$ denote the identity operator, the operator
$(D^{2}-i(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD})D-\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}I)^{s}$ is bounded with multiplier
$(-1)^{s}(x-\unicode[STIX]{x1D6FC})^{s}(x-\unicode[STIX]{x1D6FD})^{s}$, and the Sobolev subspace of
$L^{2}(\mathbb{R})$ of order
$2s$ can be given a norm equivalent to the usual one so that
$(D^{2}-i(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD})D-\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}I)^{s}$ becomes an isometry onto the Hilbert space
${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$. So a space
${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ may be regarded as a type of Sobolev space having a negative index.