Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-11T10:29:02.637Z Has data issue: false hasContentIssue false

Making a case for constructive reductionism

Published online by Cambridge University Press:  06 March 2019

Christian P. Müller*
Affiliation:
Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany. christian.mueller@uk-erlangen.dehttp://www.psychiatrie.uk-erlangen.de/wir_ueber_uns/mitarbeiter/prof_dr_rer_nat_christian_p_mueller/index_ger.html

Abstract

Borsboom and colleagues argue that reductionism in psychopathology research has not provided the expected insights. Instead, they suggest a systems approach of interacting syndromes, which, however, falls short of a perspective for empirical testing. Here, a combination of both approaches is suggested: a reductionistic empirical approach allowing testability, synergistic with a constructivistic systems appraisal of syndrome networks – a constructive reductionism.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Borsboom et al. argue that reductionism in psychopathology research has not yielded sufficient insights to understand the complexity of the systems that cause psychopathologies, nor has it provided effective treatments. This somewhat pessimistic verdict may apply when the philosophically driven and publicly nourished expectations are a full understanding and full cure of the known psychiatric disorders (Müller Reference Müller2018). The leading framework for the last decades of neurobiological research in psychopathology was reductionism. Leading hypotheses were generated that suggested a single psychiatric disorder can be reduced, that is, causally explained and treated, to a dysfunction in a single target or single functional system of the brain. It can be argued that this may have been supported by the technical limitations of new empirical techniques. For instance, the view that a dysfunction in the dopaminergic (DA) system of the brain is the sole causal mediator for drug addiction development was massively driven by the advent of in vivo microdialysis (Westerink Reference Westerink1995). This technique proved that all drugs with addiction potential acutely enhance DA activity in the brain's reward circuitry, while non-addictive drugs do not (Di Chiara & Imperato Reference Di Chiara and Imperato1988). Thereby, a single prominent and many-times-replicated finding was generalized to a functional theory (Koob Reference Koob1992; McBride et al. Reference McBride, Murphy and Ikemoto1999; Wise Reference Wise2002) which did not pay tribute to the emerging complexity of the system (Salamone Reference Salamone1996). The therapeutic predictions based on this model, however, failed in practice (McCreary et al. Reference McCreary, Müller and Filip2015; Spanagel & Kiefer Reference Spanagel and Kiefer2008), suggesting that the DA theory of addiction is at least incomplete (Nutt et al. Reference Nutt, Lingford-Hughes, Erritzoe and Stokes2015). One possible reason for that could have been the initial limitation of a key technique, in that only DA was measured and only dopaminergic innervated brain structures were considered. Empirical techniques advanced and showed that many more transmitter systems of the brain are dysregulated during and after drug consumption (Heilig & Koob Reference Heilig and Koob2007; Müller & Huston Reference Müller and Huston2006; Schneider et al. Reference Schneider, Levant, Reichel, Gulbins, Kornhuber and Müller2017; Williams & Adinoff Reference Williams and Adinoff2008). What is required in this field is not to deny the massive gain in knowledge based on single-target empirical approaches (Koob & Volkow Reference Koob and Volkow2016), but rather, a constructive synthesis of those findings (Spanagel Reference Spanagel2009).

Borsboom and colleagues suggest a systems approach in which syndromes of distinct diagnostic categories interact. Only a systems understanding that also comprises proximal and distal environmental factors would allow for overcoming what they consider an epistemological failure. While this radical approach has the merit of considering syndrome-syndrome interactions (e.g., Schuckit et al. Reference Schuckit, Tipp, Bergman, Reich, Hesselbrock and Smith1997), as well as environmental factors in psychopathology (Caspi & Moffitt Reference Caspi and Moffitt2006), it falls short of a major criterion for a scientific approach: its testability. Here it is argued that a major driving force for a bio-reductionistic approach in psychopathology is actually its testability. Hypotheses can be falsified on empirical grounds, when single variables – biological and environmental – can be addressed. This is difficult, and probably impossible, with syndromes that naturally involve a plethora of single causal elements which cannot be systematically manipulated at once. Empirical network approaches simply purport testability by bioinformatic large-data analysis. Although they are not worthless, they are just correlative by nature. By that way, they may generate hypotheses; however, these require explicit testing (Easton et al. Reference Easton, Lucchesi, Lourdusamy, Lenz, Solati, Golub, Lewczuk, Fernandes, Desrivieres, Dawirs, Moll, Kornhuber, Frank, Hoffmann, Soyka, Kiefer, Schumann, Giese and Müller2013; Mielenz et al. Reference Mielenz, Reichel, Jia, Quinlan, Stöckl, Mettang, Zilske, Kirmizi-Alsan, Schönberger, Praetner, Huber, Amato, Schwarz, Purohit, Brachs, Spranger, Hess, Büttner, Ekici, Perez-Branguli, Winner, Rauschenberger, Banaschewski, Bokde, Büchel, Conrod, Desrivieres, Flor, Frouin, Gallinat, Garavan, Gowland, Heinz, Martinot, Lemaitre, Nees, Paus, Smolka, Schambony, Bäuerle, Eulenburg, Alzheimer, Lourdusamy, Schumann and Müller2018; Schumann et al. Reference Schumann, Liu, O'Reilly, Gao, Song, Xu, Ruggeri, Amin, Jia, Preis, Segura, Akira, Barbieri, Baumeister, Cauchi, Clarke, Enroth, Fischer, Hallfors, Harris, Hieber, Hofer, Hottenga, Johansson, Joshi, Kaartinen, Laitinen, Lemaitre, Loukola, Luan, Lyytikainen, Mangino, Manichaikul, Mbarek, Milaneschi, Moayyeri, Mukamal, Nelson, Nettleton, Partinen, Rawal, Robino, Rose, Sala, Satoh, Schmidt, Schraut, Scott, Smith, Starr, Teumer, Trompet, Uitterlinden, Venturini, Vergnaud, Verweij, Vitart, Vuckovic, Wedenoja, Yengo, Yu, Zhang, Zhao, Boomsma, Chambers, Chasman, Daniela, de G., Deary, Eriksson, Esko, Eulenburg, Franco, Froguel, Gieger, Grabe, Gudnason, Gyllensten, Harris, Hartikainen, Heath, Hocking, Hofman, Huth, Jarvelin, Jukema, Kaprio, Kooner, Kutalik, Lahti, Langenberg, Lehtimaki, Liu, Madden, Martin, Morrison, Penninx, Pirastu, Psaty, Raitakari, Ridker, Rose, Rotter, Samani, Schmidt, Spector, Stott, Strachan, Tzoulaki, van der Harst, van Duijn, Marques-Vidal, Vollenweider, Wareham, Whitfield, Wilson, Wolffenbuttel, Bakalkin, Evangelou, Liu, Rice, Desrivieres, Kliewer, Mangelsdorf, Müller, Levy and Elliott2016). Borsboom et al. need to be asked for this crucial but elegantly avoided point in their theory: How do they want to test causal factors at the systems (network) level without reducing it to measurable units? So far, the examples they provide are just disguised reductionistic approaches.

In order to rescue the innovative momentum of the authors’ proposal, a combination of both approaches may be considered: a reductionistic empirical frame which allows empirical testability, interwoven with a constructivistic systems approach which brings single elements together to a higher-order network of syndromes: a constructive reductionism. Instances for that can already be found, for example, in drug addiction research. A systems approach proposed the interaction of disorders, like depression or schizophrenia causing the abuse and addiction to various psychoactive drugs (Müller & Schumann Reference Müller and Schumann2011). The reductionistic testing of mechanisms has recently yielded first testing of elements of a depression-alcoholism (Gulbins et al. Reference Gulbins, Palmada, Reichel, Luth, Bohmer, Amato, Müller, Tischbirek, Groemer, Tabatabai, Becker, Tripal, Staedtler, Ackermann, van Brederode, Alzheimer, Weller, Lang, Kleuser, Grassme and Kornhuber2013; Müller et al. Reference Müller, Kalinichenko, Tiesel, Witt, Stöckl, Sprenger, Fuchser, Beckmann, Praetner, Huber, Amato, Mühle, Büttner, Ekici, Smaga, Pomierny-Chamiolo, Pomierny, Filip, Eulenburg, Gulbins, Lourdusamy, Reichel and Kornhuber2017) and schizophrenia-nicotine addiction syndrome interaction (Koukouli et al. Reference Koukouli, Rooy, Tziotis, Sailor, O'Neill, Levenga, Witte, Nilges, Changeux, Hoeffer, Stitzel, Gutkin, DiGregorio and Maskos2017). A constructivistic approach is now picking that up to a systems view that includes various syndrome-syndrome interactions (Müller & Kornhuber Reference Müller and Kornhuber2017; Schneider et al. Reference Schneider, Levant, Reichel, Gulbins, Kornhuber and Müller2017). Given the increasingly recognized complexity of the biological base of psychiatric disorder syndromes (Schumann et al. Reference Schumann, Binder, Holte, de Kloet, Oedegaard, Robbins, Walker-Tilley, Bitter, Brown, Buitelaar, Ciccocioppo, Cools, Escera, Fleischhacker, Flor, Frith, Heinz, Johnsen, Kirschbaum, Klingberg, Lesch, Lewis, Maier, Mann, Martinot, Meyer-Lindenberg, Müller, Müller, Nutt, Persico, Perugi, Pessiglione, Preuss, Roiser, Rossini, Rybakowski, Sandi, Stephan, Undurraga, Vieta, van der Wee, Wykes, Haro and Wittchen2014), we should not expect a full-blown constructive synthesis happening in a single step, that is, by just interlinking single reductionistic findings.

Reductionism is, in fact, a multi-level reductionism, where functional networks are step-wise reduced to functional elements and sub-elements. Mirroring this, a multi-level constructivism should also be acknowledged. At the lowest level, reductionistic findings with the highest possible technical resolution are brought together to a nano-systems view (e.g., Kreek et al. Reference Kreek, Nielsen, Butelman and Laforge2005; Ungless et al. Reference Ungless, Argilli and Bonci2010). At the next constructive level, nano-systems views are brought together to constitute micro-systems views (e.g., Hyman et al. Reference Hyman, Malenka and Nestler2006; Robinson & Kolb Reference Robinson and Kolb2004). This can be continued up to the level of the whole brain (Müller & Homberg Reference Müller and Homberg2015; Spanagel Reference Spanagel2009) and syndrome behaviours (Schumann et al. Reference Schumann, Binder, Holte, de Kloet, Oedegaard, Robbins, Walker-Tilley, Bitter, Brown, Buitelaar, Ciccocioppo, Cools, Escera, Fleischhacker, Flor, Frith, Heinz, Johnsen, Kirschbaum, Klingberg, Lesch, Lewis, Maier, Mann, Martinot, Meyer-Lindenberg, Müller, Müller, Nutt, Persico, Perugi, Pessiglione, Preuss, Roiser, Rossini, Rybakowski, Sandi, Stephan, Undurraga, Vieta, van der Wee, Wykes, Haro and Wittchen2014). This is not the end, however. An extended endophenotype of psychiatric disorders should comprise the whole body periphery as a proximal environment, and the social as well as physical environments of the organisms as distal environments (Badiani Reference Badiani2013; Zinberg Reference Zinberg1984). The constructivistic synthesis may then end at a level where also the time component (i.e., personal, social and historical developments) is incorporated in this systematic construction. However, there will always be an error term in the reductionistic as well as constructivistic part of the approach. Simple chance events in biological systems, for example, de novo mutations (Michaelson et al. Reference Michaelson, Shi, Gujral, Zheng, Malhotra, Jin, Jian, Liu, Greer, Bhandari, Wu, Corominas, Peoples, Koren, Gore, Kang, Lin, Estabillo, Gadomski, Singh, Zhang, Akshoomoff, Corsello, McCarroll, Iakoucheva, Li, Wang and Sebat2012), may act as single-case determinants. This cannot be overcome and controlled by either reductionism or constructivism, nor by their combination, and we may have to live with a certain degree of uncertainty.

Acknowledgments

The work of the author was supported by the Interdisciplinary Center for Clinical Research Erlangen, Project E22, and by research grant MU2789/8-1 from the Deutsche Forschungsgemeinschaft.

References

Badiani, A. (2013) Substance-specific environmental influences on drug use and drug preference in animals and humans. Current Opinion in Neurobiology 23:588–96.Google Scholar
Caspi, A. & Moffitt, T. E. (2006) Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience 7:583–90.Google Scholar
Di Chiara, G. & Imperato, A. (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences USA 85:5274–78.Google Scholar
Easton, A. C., Lucchesi, W., Lourdusamy, A., Lenz, B., Solati, J., Golub, Y., Lewczuk, P., Fernandes, C., Desrivieres, S., Dawirs, R. R., Moll, G. H., Kornhuber, J., Frank, J., Hoffmann, P., Soyka, M., Kiefer, F., Schumann, G., Giese, K. P. & Müller, C. P. (2013) AlphaCaMKII autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology 38:1636–47.Google Scholar
Gulbins, E., Palmada, M., Reichel, M., Luth, A., Bohmer, C., Amato, D., Müller, C. P., Tischbirek, C. H., Groemer, T. W., Tabatabai, G., Becker, K. A., Tripal, P., Staedtler, S., Ackermann, T. F., van Brederode, J., Alzheimer, C., Weller, M., Lang, U. E., Kleuser, B., Grassme, H. & Kornhuber, J. (2013) Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nature Medicine 19:934–38.Google Scholar
Heilig, M. & Koob, G. F. (2007) A key role for corticotropin-releasing factor in alcohol dependence. Trends in Neurosciences 30:399406.Google Scholar
Hyman, S. E., Malenka, R. C. & Nestler, E. J. (2006) Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Reviews in Neurosciences 29:565–98.Google Scholar
Koob, G. F. (1992) Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends in Pharmacological Sciences 13:177–84.Google Scholar
Koob, G. F. & Volkow, N. D. (2016) Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 3:760–73.Google Scholar
Koukouli, F., Rooy, M., Tziotis, D., Sailor, K. A., O'Neill, H. C., Levenga, J., Witte, M., Nilges, M., Changeux, J. P., Hoeffer, C. A., Stitzel, J. A., Gutkin, B. S., DiGregorio, D. A. & Maskos, U. (2017) Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nature Medicine 23:347–54.Google Scholar
Kreek, M. J., Nielsen, D. A., Butelman, E. R. & Laforge, K. S. (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience 8:1450–57.Google Scholar
McBride, W. J., Murphy, J. M. & Ikemoto, S. (1999) Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behavioural Brain Research 101:129–52.Google Scholar
McCreary, A. C., Müller, C. P. & Filip, M. (2015) Psychostimulants: Basic and clinical pharmacology. International Review Neurobiology 120:4183.Google Scholar
Michaelson, J. J., Shi, Y., Gujral, M., Zheng, H., Malhotra, D., Jin, X., Jian, M., Liu, G., Greer, D., Bhandari, A., Wu, W., Corominas, R., Peoples, A., Koren, A., Gore, A., Kang, S., Lin, G. N., Estabillo, J., Gadomski, T., Singh, B., Zhang, K., Akshoomoff, N., Corsello, C., McCarroll, S., Iakoucheva, L. M., Li, Y., Wang, J. & Sebat, J. (2012) Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151(7):1431–42.Google Scholar
Mielenz, D., Reichel, M., Jia, T., Quinlan, E. B., Stöckl, T., Mettang, M., Zilske, D., Kirmizi-Alsan, E., Schönberger, P., Praetner, M., Huber, S. E., Amato, D., Schwarz, M., Purohit, P., Brachs, S., Spranger, J., Hess, A., Büttner, C., Ekici, A. B., Perez-Branguli, F., Winner, B., Rauschenberger, V., Banaschewski, T., Bokde, A. L., Büchel, C., Conrod, P. J., Desrivieres, S., Flor, H., Frouin, V., Gallinat, J., Garavan, H., Gowland, P., Heinz, A., Martinot, J. L., Lemaitre, H., Nees, F., Paus, T., Smolka, M. N., Schambony, A., Bäuerle, T., Eulenburg, V., Alzheimer, C., Lourdusamy, A., Schumann, G. & Müller, C. P. (2018) EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Molecular Psychiatry 23(5):1303–19. doi:10.1038/mp.2017.63.Google Scholar
Müller, C. P. (2018) Animal models of psychoactive drug use and addiction: Present problems and future needs for translational approaches. Behavioural Brain Research 352:109–15. doi:10.1016/j.bbr.2017.06.028.Google Scholar
Müller, C. P. & Homberg, J. (2015) The role of serotonin in drug use and addiction. Behavioural Brain Research 277C:146–92.Google Scholar
Müller, C. P. & Huston, J. P. (2006) Determining the region-specific contributions of 5-HT receptors to the psychostimulant effects of cocaine. Trends in Pharmacological Sciences 27:105–12.Google Scholar
Müller, C. P., Kalinichenko, L. S., Tiesel, J., Witt, M., Stöckl, T., Sprenger, E., Fuchser, J., Beckmann, J., Praetner, M., Huber, S. E., Amato, D., Mühle, C., Büttner, C., Ekici, A. B., Smaga, I., Pomierny-Chamiolo, L., Pomierny, B., Filip, M., Eulenburg, V., Gulbins, E., Lourdusamy, A., Reichel, M. & Kornhuber, J. (2017) Paradoxical antidepressant effects of alcohol are related to acid sphingomyelinase and its control of sphingolipid homeostasis. Acta Neuropathologica 133(3):463–83.Google Scholar
Müller, C. P. & Kornhuber, J. (2017) Biological evidence for paradoxical improvement of psychiatric disorder symptoms by addictive drugs. Trends in Pharmacological Sciences 38(6):501502.Google Scholar
Müller, C. P. & Schumann, G. (2011) Drugs as an instrument: A new framework for non-addictive psychoactive drug use. Behavioral and Brain Sciences 34(6):293347.Google Scholar
Nutt, D. J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P. R. (2015) The dopamine theory of addiction: Forty years of highs and lows. Nature Reviews Neuroscience 16:305–12.Google Scholar
Robinson, T. E. & Kolb, B. (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47:3346.Google Scholar
Salamone, J. D. (1996) The behavioral neurochemistry of motivation: Methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. Journal of Neuroscience Methods 64:137–49.Google Scholar
Schneider, M., Levant, B., Reichel, M., Gulbins, E., Kornhuber, J. & Müller, C. P. (2017) Lipids in psychiatric disorders and preventive medicine. Neuroscience and Biobehavioral Reviews 76:336–62.Google Scholar
Schuckit, M. A., Tipp, J. E., Bergman, M., Reich, W., Hesselbrock, V. M. & Smith, T. L. (1997) Comparison of induced and independent major depressive disorders in 2,945 alcoholics. American Journal of Psychiatry 154:948–57.Google Scholar
Schumann, G., Binder, E. B., Holte, A., de Kloet, E. R., Oedegaard, K. J., Robbins, T. W., Walker-Tilley, T. R., Bitter, I., Brown, V. J., Buitelaar, J., Ciccocioppo, R., Cools, R., Escera, C., Fleischhacker, W., Flor, H., Frith, C. D., Heinz, A., Johnsen, E., Kirschbaum, C., Klingberg, T., Lesch, K. P., Lewis, S., Maier, W., Mann, K., Martinot, J. L., Meyer-Lindenberg, A., Müller, C. P., Müller, W. E., Nutt, D. J., Persico, A., Perugi, G., Pessiglione, M., Preuss, U. W., Roiser, J. P., Rossini, P. M., Rybakowski, J. K., Sandi, C., Stephan, K. E., Undurraga, J., Vieta, E., van der Wee, N., Wykes, T., Haro, J. M. & Wittchen, H. U. (2014) Stratified medicine for mental disorders. European Neuropsychopharmacology 24(1):550. doi:10.1016/j.euroneuro.2013.09.010.Google Scholar
Schumann, G., Liu, C., O'Reilly, P., Gao, H., Song, P., Xu, B., Ruggeri, B., Amin, N., Jia, T., Preis, S., Segura, L. M., Akira, S., Barbieri, C., Baumeister, S., Cauchi, S., Clarke, T. K., Enroth, S., Fischer, K., Hallfors, J., Harris, S. E., Hieber, S., Hofer, E., Hottenga, J. J., Johansson, A., Joshi, P. K., Kaartinen, N., Laitinen, J., Lemaitre, R., Loukola, A., Luan, J., Lyytikainen, L. P., Mangino, M., Manichaikul, A., Mbarek, H., Milaneschi, Y., Moayyeri, A., Mukamal, K., Nelson, C., Nettleton, J., Partinen, E., Rawal, R., Robino, A., Rose, L., Sala, C., Satoh, T., Schmidt, R., Schraut, K., Scott, R., Smith, A. V., Starr, J. M., Teumer, A., Trompet, S., Uitterlinden, A. G., Venturini, C., Vergnaud, A. C., Verweij, N., Vitart, V., Vuckovic, D., Wedenoja, J., Yengo, L., Yu, B., Zhang, W., Zhao, J. H., Boomsma, D. I., Chambers, J., Chasman, D. I., Daniela, T., de G., E., Deary, I., Eriksson, J. G., Esko, T., Eulenburg, V., Franco, O. H., Froguel, P., Gieger, C., Grabe, H. J., Gudnason, V., Gyllensten, U., Harris, T. B., Hartikainen, A. L., Heath, A. C., Hocking, L., Hofman, A., Huth, C., Jarvelin, M. R., Jukema, J. W., Kaprio, J., Kooner, J. S., Kutalik, Z., Lahti, J., Langenberg, C., Lehtimaki, T., Liu, Y., Madden, P. A., Martin, N., Morrison, A., Penninx, B., Pirastu, N., Psaty, B., Raitakari, O., Ridker, P., Rose, R., Rotter, J. I., Samani, N. J., Schmidt, H., Spector, T. D., Stott, D., Strachan, D., Tzoulaki, I., van der Harst, P., van Duijn, C. M., Marques-Vidal, P., Vollenweider, P., Wareham, N. J., Whitfield, J. B., Wilson, J., Wolffenbuttel, B., Bakalkin, G., Evangelou, E., Liu, Y., Rice, K. M., Desrivieres, S., Kliewer, S. A., Mangelsdorf, D. J., Müller, C. P., Levy, D. & Elliott, P. (2016) KLB is associated with alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of alcohol preference. Proceedings of the National Academy of Sciences USA 113:14372–77.Google Scholar
Spanagel, R. (2009) Alcoholism: A systems approach from molecular physiology to addictive behavior. Physiological Reviews 89:649705.Google Scholar
Spanagel, R. & Kiefer, F. (2008) Drugs for relapse prevention of alcoholism: Ten years of progress. Trends in Pharmacological Sciences 29:109–15.Google Scholar
Ungless, M. A., Argilli, E. & Bonci, A. (2010) Effects of stress and aversion on dopamine neurons: Implications for addiction. Neuroscience and Biobehavioral Reviews 35:151–56.Google Scholar
Westerink, B. H. (1995) Brain microdialysis and its application for the study of animal behaviour. Behavioural Brain Research 70:103–24.Google Scholar
Williams, M. J. & Adinoff, B. (2008) The role of acetylcholine in cocaine addiction. Neuropsychopharmacology 33:1779–97.Google Scholar
Wise, R. A. (2002) Brain reward circuitry: Insights from unsensed incentives. Neuron 36:229–40.Google Scholar
Zinberg, N. E. (1984) Drug, set, and setting: The basis for controlled intoxicant use. Yale University Press.Google Scholar