1. R., Aris, Vectors, Tensors, and the Basic Equations in Fluid Mechanics, Prentice-Hall, Englewood Cliffs, NJ (1962).
2. E., Betti, “Teoria della' Elasticita,” Nuovo Cimento, Serie 2, Tom VII and VIII (1872).
3. R. B., Bird, W. E., Stewart, and E. N., Lightfoot, Transport Phenomena, John Wiley & Sons, New York (1960).
4. R. B., Bird, R. C., Armstrong, and O., Hassager, Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics, 2nd ed., John Wiley & Sons, New York (1971).
5. J., Bonet and R. D., Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed., Cambridge University Press, New York (2008).
6. A. C., Eringen and G. W., Hanson, Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002).
7. R. T., Fenner and J. N., Reddy, Mechanics of Solids ad Structures, 2nd ed., CRC Press, Boca Raton, FL (2012).
8. W., Flügge, Viscoelasticity, 2nd ed., Springer-Verlag, New York (1975).
9. M. E., Gurtin, An Introduction to Continuum Mechanics, Elsevier Science & Technology, San Diego, CA (1981).
10. M. E., Gurtin, E., Fried, and L., Anand, The Mechanics and Thermodynamics of Continua, Cambridge University Press, New York (2010).
11. K. D., Hjelmstad, Fundamentals of Structural Mechanics, Prentice-Hall, Englewood Cliffs, NJ (1997).
12. G. A., Holzapfel, Nonlinear Solid Mechanics, John Wiley & Sons, New York (2001).
13. H., Hochstadt, Special Functions of Mathematical Physics, Holt, Reinhart and Winston, New York (1961).
14. J. D., Jackson, Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York (1975).
15. W., Jaunzemis, Continuum Mechanics, Macmillan, New York (1967).
16. E., Kreyszig, Introduction Functional Analysis with Applications, John Wiley & Sons, New York (1978).
17. E. H., Lee, “Viscoelasticity,” in Handbook of Engineering Mechanics, McGraw-Hill, New York (1962).
18. L. E., Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice Hall, Englewood Cliffs, NJ (1997).
19. J. C., Maxwell, “On the calculation of the equilibrium and the stiffness of frames,” Philosophical Magazine, Ser. 4, 27, 294 (1864).
20. N. I., Mushkelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Grüningen, The Netherlands (1963).
21. Naghdi, P. M., P. M., Naghdi's Notes on Continuum Mechanics, Department of Mechanical Engineering, University of California, Berkeley, 2001. These class notes were developed (continuously since 1960) by Professor P. M. Naghdi (1924–1994) for a first course on continuum mechanics. The handwritten notes (by Professor Naghdi) were typed and later digitized (presumably, under the direction of Professor J. Casey).
22. A. W., Naylor and G. R., Sell, Linear Operator Theory in Engineering and Science, Holt, Reinhart and Winston, New York (1971).
23. W., Noll, The Non-Linear Field Theories of Mechanics, 3rd ed., SpringerVerlag, New York (2004).
24. R. W., Ogden, Non-Linear Elastic Deformations, Halsted (John Wiley & Sons), New York (1984).
25. J. T., Oden and J. N., Reddy, Variational Principles in Theoretical Mechanics, 2nd ed., Springer-Verlag, Berlin (1983).
26. J. N., Reddy, Applied Functional Analysis and Variational Methods in Engineering, McGraw-Hill, New York (1986); reprinted by Krieger, Malabar, FL (1991).
27. J. N., Reddy, Energy Principles and Variational Methods in Applied Mechanics, 2nd ed., John Wiley & Sons, New York (2002).
28. J. N., Reddy, Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, 2nd ed., CRC Press, Boca Raton, FL (2004).
29. J. N., Reddy, An Introduction to the Finite Element Method, 3rd ed., McGraw-Hill, New York (2006).
30. J. N., Reddy and D. K., Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics, 2nd ed., CRC Press, Boca Raton, FL (2001).
31. J. N., Reddy and M. L., Rasmussen, Advanced Engineering Analysis, John Wiley & Sons, New York (1982); reprinted by Krieger, Malabar, FL (1991).
32. H., Schlichting, Boundary Layer Theory, (translated from German by J. Kestin), 7th ed., McGraw-Hill, New York (1979).
33. L. A., Segel, Mathematics Applied to Continuum Mechanics (with additional material on elasticity by G. H., Handelman), Dover Publications, New York (1987).
34. W. S., Slaughter, The Linearized Theory of Elasticity, Birkhüaser, Boston (2002).
35. I. S., Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York; reprinted by Krieger, Melbourne, FL (1956).
36. M. H., Sadd, Elasticity: Theory, Applications, and Numerics, Academic Press, New York (2004).
37. S. P., Timoshenko and J. N., Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York (1970).
38. C. A., Truesdell, Elements of Continuum Mechanics, 2nd printing, Springer-Verlag, New York (1984).
39. C., Truesdell and R. A., Toupin, “The Classical Field Theories,” in Encyclopedia of Physics, Flügge, S. (ed.), Springer-Verlag, Berlin (1965).
40. C., Truesdell and W., Noll, “The Non-Linear Field Theories of Mechanics,” in Encyclopedia of Physics, III/3, S., Flügge (ed.), Springer-Verlag, Berlin (1965).