1 Introduction
For any complex number a, we define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu1.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu2.png?pub-status=live)
We set
$E(q):=(q;q)_\infty =\prod _{n=1}^{\infty }(1-q^n)$
;
$E(q)$
is known as Euler’s product. We can view
$E(q)$
as a particular case of Ramanujan’s theta function (see [Reference Berndt1, page 34]): that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu3.png?pub-status=live)
Jacobi’s triple product identity (see [Reference Hirschhorn5, page 5]) is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu4.png?pub-status=live)
Replacing
$qz$
by a and
$q/z$
by b in Jacobi’s triple product identity, yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu5.png?pub-status=live)
In particular,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu6.png?pub-status=live)
A t-dissection of a power series
$A(q)$
is given by
$A(q)=\sum _{k=0}^{t-1}q^kA_k(q^t)$
, where the
$A_k(q^t)$
are power series in
$q^t$
. The
$3$
-dissection of
$E(q)$
(see [Reference Berndt1, entry 31, page 48]) is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu7.png?pub-status=live)
We also have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu8.png?pub-status=live)
which are, respectively, 5-, 7- and 11- dissections of
$E(q)$
(see [Reference Berndt1, pages 82, 303 and 363]. A generalised form of these dissections is given in the following theorem.
Theorem 1.1 [Reference Berndt1, Theorem 12.1, page 274].
Suppose m is a positive integer with
$m\equiv 1 \ (\text {mod}~6)$
. If
$m=6t+1$
with t positive, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu9.png?pub-status=live)
If
$m=6t-1$
with t positive, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu10.png?pub-status=live)
Theorem 1.1 was found independently by Ramanathan [Reference Ramanathan7] and Evans [Reference Evans4]. Recently, it was reproved by McLaughlin [Reference McLaughlin6] while establishing some other general dissections involving infinite products.
Hirschhorn [Reference Hirschhorn5, page 332] gave the 2- and 4- dissections of
$E(q)$
as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn1.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn2.png?pub-status=live)
where
$(a_1, a_2,\ldots ,a_n;q)_\infty :=(a_1;q)_\infty (a_2;q)_\infty \cdots (a_n;q)_\infty $
.
Identity (1.2) was obtained by 4-dissecting the products
$(q^6,q^{10},q^{16};q^{16})_\infty $
and
$(q^2,q^{14},q^{16};q^{16})_\infty $
in (1.1). Hirschhorn also remarked that we can continue in the same manner and find the 8-dissection, the 16-dissection and so on. He concluded by noting the following conjecture on the
$2^n$
-dissection of
$E(q)$
.
Conjecture 1.2.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu11.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn3.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn4.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn5.png?pub-status=live)
Cao [Reference Cao3] discussed product identities for theta functions using integer matrix exact covering systems. In particular, he gave the following result involving the product of two theta functions.
Theorem 1.3 [Reference Cao3, Corollary 2.2].
If
$|ab|<1$
and
$cd=(ab)^{k_1k_2}$
, where both
$k_1$
and
$k_2$
are positive integers, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn6.png?pub-status=live)
Finally, we give the following version of the quintuple product identity.
Theorem 1.4 (Quintuple product identity [Reference Berndt2, page 19]).
For
$a\neq 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn7.png?pub-status=live)
We use (1.6), (1.7) and other properties of Ramanujan’s theta function to prove Conjecture 1.2. In Section 2, we mention some preliminary results involving Ramanujan’s theta function and the pentagonal numbers
$P(n)$
. In Section 3, we provide the proof of Conjecture 1.2.
2 Preliminaries
Lemma 2.1. If
$ab=cd$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn8.png?pub-status=live)
Proof. Set
$k_1=k_2=1$
in (1.6).
Lemma 2.2 [Reference Berndt1, Entry 18, page 34].
For any integer n,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn9.png?pub-status=live)
Lemma 2.3. We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn10.png?pub-status=live)
Proof. Set
$n=1$
in (2.2).
Lemma 2.4. Let
$P(n)$
be as in (1.5). For positive integers n and k,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn11.png?pub-status=live)
Proof. We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn12.png?pub-status=live)
Replacing s and t by
$2^{n+1}+k-1$
and
$k-1$
, respectively, in (2.5), we find that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu12.png?pub-status=live)
Lemma 2.5. If n is even and
$c_k=P(-{(2^{n+1}-2)}/{3}+(k-1))$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn13.png?pub-status=live)
Proof. We have
$c_k=P(((3k-2^{n+1})-1)/{3})$
, so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn14.png?pub-status=live)
Similar calculations give the formulas in the following three lemmas.
Lemma 2.6. If n is even and
$c_k=P(-{(2^{n+1}-2)}/{3}+(k-1))$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu13.png?pub-status=live)
Lemma 2.7. If n is odd and
$c_k=P({(2^{n+1}-1)}/{3}-(k-1))$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu14.png?pub-status=live)
Lemma 2.8. If n odd is and
$c_k=P({(2^{n+1}-1)}/{3}-(k-1))$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu15.png?pub-status=live)
3 Proof of the main result
Theorem 3.1. Conjecture 1.2 is true.
Proof. We set
$a=-q$
,
$b=-q^2$
,
$c=-q^{2^{2n+2}} d=-q^{2^{2n+3}}$
,
$k_1=k_2=2^{n+1}$
and
$r=k-1$
in (1.6) to obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn15.png?pub-status=live)
Since
$f(-q,-q^2)=E(q)$
,
$f(-q^{2^{2n+2}},-q^{2^{2n+3}})=E(q^{2^{2n+2}})$
,
$P(k-1)={(k-1)(3k-4)}/{2}$
, we can rewrite (3.1) as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn16.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn17.png?pub-status=live)
Now
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn18.png?pub-status=live)
Employing (2.4) and simplifying the exponents of the arguments of the theta functions, we can rewrite (3.4) as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn19.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn20.png?pub-status=live)
Setting
$a=q^{3\times 2^{2n+1}+2^n(6k-7)}$
,
$b=q^{3\times 2^{2n+1}-2^n(6k-7)}$
,
$c=-q^{2^{2n+2}}$
and
$d=-q^{2^{2n+3}}$
in (3.6) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn21.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn22.png?pub-status=live)
From (3.2),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn23.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu16.png?pub-status=live)
where
$H_k=(-1)^{k+1}q^{P(k-1)}f(q^{3\times 2^{2n+1}+2^n(6k-7)},q^{3\times 2^{2n+1}-2^n(6k-7)})$
. We now arrange the
$H_k$
in pairs so that each of these pairs can be reduced to quintuple products. For this purpose, we consider two separate cases according to whether n is even or odd.
Case I: n is even. We consider
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn24.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn25.png?pub-status=live)
Note that
$S_2$
is the sum of
$H_1,H_2,\ldots ,H_{{(2^{n+1}+4)}/{3}}$
and
$S_1$
is the sum of
$H_{{(2^{n+1}+7)}/{3}}$
,
$H_{{(2^{n+1}+10)}/{3}},\ldots ,H_{2^{n+1}}$
and so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn26.png?pub-status=live)
We also note that
$c_k$
is given by (1.4).
Now
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn27.png?pub-status=live)
Employing Lemma 2.5 in (3.13) and simplifying the exponents of the arguments of the theta functions, we find that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn28.png?pub-status=live)
Also
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn29.png?pub-status=live)
Employing Lemma 2.6 in (3.15) and simplifying the exponents,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn30.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn31.png?pub-status=live)
Substituting the expressions for
$H_{{(2^{n+2}+2)}/{3}-k+1}$
and
$H_{{(2^{n+2}+5)}/{3}+k-1}$
from (3.14) and (3.17), respectively, in (3.10), we find that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn32.png?pub-status=live)
Further,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn33.png?pub-status=live)
Also,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn34.png?pub-status=live)
Employing Lemma 2.5 in (3.20) and simplifying the exponents,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn35.png?pub-status=live)
Using (3.19) and (3.21) in (3.11),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn36.png?pub-status=live)
From (3.12), (3.18) and (3.22),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn37.png?pub-status=live)
Case II: n is odd. In this case, we consider the sums
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn38.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn39.png?pub-status=live)
Note that
$S_3$
is the sum of
$H_1,H_2,\ldots ,H_{{(2^{n+2}+4)}/{3}}$
and
$S_4$
is the sum of
$H_{{(2^{n+2}+7)}/{3}}$
,
$H_{{(2^{n+2}+10)}/{3}},\ldots ,H_{2^{n+1}}$
and so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn40.png?pub-status=live)
We also note that
$c_k$
is given by (1.3).
We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn41.png?pub-status=live)
Similarly,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn42.png?pub-status=live)
Using Lemma 2.7 in (3.28) and simplifying the exponents,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn43.png?pub-status=live)
Now we employ (2.3) in (3.29) to obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn44.png?pub-status=live)
Using (3.27) and (3.30) in (3.24),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn45.png?pub-status=live)
Also,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn46.png?pub-status=live)
Using Lemma 2.7 in (3.32) and simplifying the exponents,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn47.png?pub-status=live)
Employing (2.2) in (3.33), we find that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn48.png?pub-status=live)
Further,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn49.png?pub-status=live)
Using Lemma 2.8 in (3.35), we find that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn50.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn51.png?pub-status=live)
From (3.34), (3.37) and (3.25),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn52.png?pub-status=live)
Substituting the expressions for
$S_3$
and
$S_4$
from (3.31) and (3.38), respectively, in (3.26),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn53.png?pub-status=live)
From (3.23) and (3.39) we find that, for any positive integer n,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn54.png?pub-status=live)
where the appropriate expression for
$c_k$
is chosen according to whether n is even or odd.
Setting
$A=-q^{-2^{2n+1}+2^n(2k-1)}$
and
$Q=q^{2^{2n+2}}$
in (3.40), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqn55.png?pub-status=live)
Employing the quintuple product identity in (3.41),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241007123408116-0475:S0004972724000595:S0004972724000595_eqnu17.png?pub-status=live)
Thus we have completed the proof of Conjecture 1.2.