Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-06T08:55:41.128Z Has data issue: false hasContentIssue false

Characterizations of Morrey type spaces

Published online by Cambridge University Press:  14 May 2021

Fangmei Sun
Affiliation:
Department of Mathematics, Shantou University, Shantou515063, People’s Republic of China e-mail: 18fmsun@stu.edu.cn
Hasi Wulan*
Affiliation:
Department of Mathematics, Shantou University, Shantou515063, People’s Republic of China e-mail: 18fmsun@stu.edu.cn
*
Rights & Permissions [Opens in a new window]

Abstract

For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$ , denoted by $\mathcal {D}^s_K$ . Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K-Carleson measures. A relationship between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ is given by fractional order derivatives. As an extension of some known results, for a positive Borel measure $\mu $ on $\mathbb {D}$ , we find sufficient or necessary condition for the embedding map $I: \mathcal {D}^{s}_{K}\mapsto \mathcal {T}^s_{K}(\mu)$ to be bounded.

Type
Article
Copyright
© Canadian Mathematical Society 2021

1 Introduction

Let $\mathbb {D}=\{z\in \mathbb {C}: |z|<1\}$ denote the open unit disk in the complex plane $\mathbb {C}$ and let $H(\mathbb {D})$ be the space of all analytic functions in $\mathbb {D}$ endowed with the topology of uniform convergence in compact subsets. For $-1<s<\infty $ , a function $f\in H(\mathbb {D})$ belongs to the weighted Dirichlet spaces $\mathcal {D}_s$ if

$$ \begin{align*}\|f\|^2_{\mathcal{D}_s}=|f(0)|^2+\int_{\mathbb{D}}|f^{\prime}(z)|^2(1-|z|^2)^s\mathrm{d}A(z)<\infty. \end{align*} $$

Here, $\mathrm {d}A$ is the normalized area measure on $\mathbb {D}$ .

Through this paper, we assume that $K: [0, \infty)\rightarrow [0, \infty)$ is a right-continuous and nondecreasing function, not identically zero. For $0<s<\infty $ , a function $f\in H(\mathbb {D})$ belongs to the Morrey type space $\mathcal {D}^{s}_{K}$ if

(1.1) $$ \begin{align} \|f\|^{2}_{\mathcal{D}^{s}_{K}}=|f(0)|^2+\underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{(1-|a|^2)^s}{K(1-|a|^2)}\|f\circ\varphi_{a}-f(a)\| ^{2}_{\mathcal{D}_s}<\infty, \end{align} $$

where $\varphi _{a}(z)=\frac {a-z}{1-\bar {a}z}$ is a Möbius transformation of $\mathbb {D}$ . From the definition, we know that $\mathcal {D}^{s}_{K}$ mainly depends on the behavior of the function $K(t)$ for small t.

It is clear that $\mathcal {D}^{s}_{K}$ is always a subspace of $\mathcal {D}_s$ for $0<s<\infty $ , and $\mathcal {D}^{s_1}_{K}\subseteq \mathcal {D}^{s_2}_{K}$ for $0<s_1\leq s_2<\infty $ . Some choices of s and K give known spaces. For example, if $K(t)=t^{s\lambda }$ , $0\leq s, \lambda \leq 1$ , then $\mathcal {D}^{s}_{K}=\mathcal {D}^{\lambda }_s$ , which was considered in [Reference Galanopoulos, Merchán and Siskakis6]; if $s=1$ , $\mathcal {D}^{s}_{K}$ gives $H^2_K$ , and if $K(t)=t^s$ , $0<s<\infty $ , then $\mathcal {D}^{s}_{K}=\mathcal {Q}_s$ ; see [Reference Wulan and Zhou24] for $H^2_K$ and [Reference Xiao26Reference Xiao27] for the theory of $\mathcal {Q}_s$ spaces.

Denote by $\mathcal Q_K$ the space of all functions $f\in H(\mathbb {D})$ for which

$$ \begin{align*}\|f\|^{2}_{\mathcal Q_{K}}=\underset{a\in\mathbb{D}}{\mathrm{sup}}\int_{\mathbb{D}}|f^{\prime}(z)|^{2}K(g(z,a))\mathrm{d}A(z)<\infty, \end{align*} $$

where $g(z,a)=\mathrm {log}|\frac {1-\bar {a}z}{z-a}|$ is the Green function of $\mathbb {D}$ with logarithmic singularity at $a\in \mathbb {D}$ . If $K(t)=t^{s}, 0<s<\infty $ , then $\mathcal Q_{K}=\mathcal Q_{s}$ . See [Reference Essén and Wulan4Reference Essén, Wulan and Xiao5Reference Wulan and Zhu25] for more results of $\mathcal Q_{K}$ spaces.

In 1938, Morrey spaces were introduced for solutions of partial differential equations and were subsequently studied as function classes in harmonic analysis on Euclidean spaces; see [Reference Morrey12Reference Peetre18Reference Zorko31]. The analytic Morrey spaces have attracted a lot of attention in recent years, for example, [Reference Galanopoulos, Merchán and Siskakis6Reference Li, Liu and Lou9Reference Liu and Lou10Reference Wu and Xie23Reference Wulan and Zhou24].

The purpose of this article is to study a more general analytic Morrey type space $\mathcal {D}^s_K$ with a nondecreasing function K. Firstly, a characterization of $\mathcal {D}^s_K$ is given by introducing K-Carleson measure. Secondly, as an extension of known results, we find a sufficient or necessary condition for the embedding map $I: \mathcal {D}^s_K\mapsto \mathcal {T}^s_{K}(\mu)$ to be bounded. Finally, we obtain a feature of $\mathcal {D}_K^s$ in terms of the fractional order derivatives, and build a bridge between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ by the fractional order derivatives.

We will write $A\lesssim B$ , if there exists a constant $C>0$ such that $A\leq CB$ . Also, the symbol $A\approx B$ means that $A\lesssim B\lesssim A$ .

2 Spaces $\mathcal {D}^{s}_{K}$ via K-Carleson measures

We say K satisfies the doubling condition if there exist positive constants C and M such that

$$ \begin{align*}K(t)\leq K(2t)\leq CK(t), \quad 0 < t < M. \end{align*} $$

In many situations, we will need to consider two conditions on K as follows:

(2.1) $$ \begin{align} \int_{0}^{1}\frac{\psi_{K}(x)}{x}\mathrm{d}x < \infty \end{align} $$

and

(2.2) $$ \begin{align} \int_{1}^{\infty}\frac{\psi_{K}(x)}{x^{1+\sigma}}\mathrm{d}x < \infty, \quad \sigma > 0, \end{align} $$

where

$$ \begin{align*}\psi_{K}(x)=\underset{0 < t\leq1}{\mathrm{sup}}\frac{K(xt)}{K(t)},\quad 0 < x < \infty. \end{align*} $$

It is clear that the function $K(t)=t^p$ satisfies (2.1) for all p, $0<p<\infty $ , and satisfies (2.2) whenever $0<p<\sigma $ . The following results about the weight function will be needed ([Reference Essén, Wulan and Xiao5, Lemmas 2.1 and 2.2] or [Reference Wulan and Zhu25, Theorems 3.4 and 3.5]).

Lemma A Suppose K satisfies condition (2.1) and the doubling condition on $(0,1)$ . Then there exists a weight function $K_{1}$ such that $K_{1}$ is comparable with K on $(0,1)$ , and the function $\frac {K_1(t)}{t^c}$ is increasing on $(0,1)$ for all sufficiently small positive constants c.

Lemma B Suppose K satisfies condition (2.2) for some $\sigma>0$ . Then there exists a weight function $K_{2}$ such that $K_{2}$ is comparable with K on (0,1), and the functions $\frac {K_2(t)}{t^\sigma }$ and $\frac {K_2(t)}{t^{\sigma -c}}$ are both decreasing on $(0,1)$ for all sufficiently small positive constants c.

Remark 2.1 If K satisfies condition (2.2) for some $\sigma>0$ , we are able to obtain some results as follows.

  1. (i) For $0<t\leq r<\infty $ , it is easy to see that

    $$ \begin{align*}\frac{K(r)}{K(t)}=\frac{K(r)t^{\sigma-c}}{r^{\sigma-c}K(t)}\bigg(\frac{r}{t}\bigg)^{\sigma-c}\leq\bigg(\frac{r}{t}\bigg)^{\sigma-c} \leq\bigg(\frac{r}{t}\bigg)^\sigma \end{align*} $$
    for all sufficiently small positive constants $c<\sigma $ .
  2. (ii) The function K satisfies the doubling condition [Reference Wulan and Zhu25, Corollary 3.2].

  3. (iii) $\mathcal Q_s\subseteq \mathcal {D}^{s}_K$ for $\sigma \leq s<\infty $ .

  4. (iv) Furthermore, if K satisfies (2.1), then $\mathcal {D}^{c}_K\subseteq \mathcal Q_K \subseteq \mathcal {D}^{\sigma }_K$ for all sufficiently small positive constants $c<\sigma $ .

Proposition 2.1 Let $0<s< \infty $ . Then $\mathcal {D}^{s}_{K}\subseteq \mathcal {D}_{s}$ and moreover, $\mathcal {D}^{s}_{K}=\mathcal {D}_{s}$ if and only if $K(0)>0$ .

Proof Note that $\mathcal {D}^{s}_{K}\subseteq \mathcal {D}_{s}$ is obvious. Assume that $K(0)>0$ and $f\in \mathcal {D}_s$ . Since K is nondecreasing, we have

$$ \begin{align*} &\underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{(1-|a|^2)^s}{K(1-|a|^2)} \int_{\mathbb{D}}|f^{\prime}(z)|^{2}(1-|\varphi_a(z)|^{2})^{s}\mathrm{d}A(z)\\ &\quad\leq\underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{1}{K(1-|a|^2)} \int_{\mathbb{D}}|f^{\prime}(z)|^{2}(1-|z|^2)^{s}\mathrm{d}A(z)\\ &\quad \leq (K(0))^{-1}\|f\|^2_{\mathcal{D}_s}. \end{align*} $$

Thus, $f\in \mathcal {D}^{s}_{K}$ and so $\mathcal {D}^{s}_{K}=\mathcal {D}_s$ .

Conversely, for $0<r<1$ , let $\mathbb {D}(c,r)=\{z\in \mathbb {D}: |\varphi _{c}(z)| < r \}$ be a pseudo-hyperbolic disk centered at $c\in \mathbb {D}$ . It is well-known that

$$ \begin{align*}1-|c|\approx|1-\bar{c}z|\approx1-|z| \end{align*} $$

for all $z\in \mathbb {D}(c,r)$ . Assume that $\mathcal {D}^{s}_{K}=\mathcal {D}_s, 0 < s < \infty $ . The closed graph theorem yields that the identity map from $\mathcal {D}_s$ to $\mathcal {D}^{s}_{K}$ is continuous. Thus, there exists a positive constant C such that

(2.3) $$ \begin{align} \|f\|_{\mathcal{D}^{s}_{K}}\leq C\|f\|_{\mathcal{D}_s} \end{align} $$

for all $f\in \mathcal {D}_s$ . For $c\in \mathbb {D}$ , we consider the test function

$$ \begin{align*}f_c(z)=(1-|c|^2)^{1+\frac{s}{2}}\int_{0}^{z}\frac{\mathrm{d}\zeta}{(1-\bar{c}\zeta)^{2+s}}, \quad z\in \mathbb{D}. \end{align*} $$

The use of [Reference Zhu30, Lemma 3.10] yields

$$ \begin{align*}\mathop{\mathrm{sup}}\limits_{c\in \mathbb{D}} \|f_c\|_{\mathcal{D}_s}<\infty; \end{align*} $$

see [Reference Pau and Peláez16, Theorem 3.1]. Combining this with (2.3) gives that

$$ \begin{align*}M:=\mathop{\mathrm{sup}}\limits_{c\in \mathbb{D}} \|f_c\|^2_{\mathcal{D}^{s}_{K}}< \infty. \end{align*} $$

Hence,

$$ \begin{align*} M&\geq\underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{(1-|a|^2)^{s}}{K(1-|a|^2)} \int_{\mathbb{D}}|f_c^{\prime}(z)|^{2}(1-|\varphi_a(z)|^{2})^{s}\mathrm{d}A(z)\\ &\geq\frac{(1-|c|^2)^{s}}{K(1-|c|^2)} \int_{\mathbb{D}}|f_c^{\prime}(z)|^{2}(1-|\varphi_c(z)|^{2})^{s}\mathrm{d}A(z)\\ &\geq\frac{(1-|c|^2)^{2+3s}}{K(1-|c|^2)} \int_{\mathbb{D}(c,r)}\frac{(1-|z|^2)^{s}}{|1-\bar{c}z|^{4+4s}}\mathrm{d}A(z)\\ &\approx\frac{1}{K(1-|c|^2)}, \end{align*} $$

which clearly implies $K(0)>0$ . The proof is complete. ▪

Proposition 2.2 Suppose K satisfies condition (2.2) for some $\sigma>0$ . Then $\mathcal {D}^{s}_{K}=\mathcal Q_s$ if and only if $K(t)\approx t^s, 0 < s < \infty $ .

Proof The proof is easily completed by the following estimates:

$$ \begin{align*}\|f\circ\varphi_{a}-f(a)\| ^{2}_{\mathcal{D}_s}\lesssim\frac{K(1-|a|^2)}{(1-|a|^2)^s}\|f\|^{2}_{\mathcal{D}_K^s},\quad a\in\mathbb{D}, \end{align*} $$

and

$$ \begin{align*}\|f\|^{2}_{\mathcal{D}_K^s}\lesssim\mathop{\mathrm{sup}}\limits_{a\in\mathbb{D}}\frac{(1-|a|^2)^s}{K(1-|a|^2)}\|f\|^{2}_{\mathcal Q_s}. \end{align*} $$

Let $|I|$ be the normalized length of arc I on the unit circle $\mathbb {T}$ , and let $S(I)$ be the Carleson box defined by

$$ \begin{align*}S(I)=\bigg\{z\in\mathbb{D}: 1-|I|<|z|<1, \frac{z}{|z|}\in I\bigg\}. \end{align*} $$

A positive Borel measure $\mu $ is a K-Carleson measure on $\mathbb {D}$ if

$$ \begin{align*}\|\mu\|_{K}=\underset{I\subseteq\mathbb{T}}{\mathrm{sup}}\frac{\mu(S(I))}{K(|I|)}<\infty. \end{align*} $$

For $0<s<\infty, 0\leq \alpha <\infty $ , if we choose

$$ \begin{align*} K(t)=\left\{\begin{array}{@{}ll} \frac{t^s}{(\log\frac{e}{t})^\alpha}, & 0 < t \leq1,\\ 1, & 1 < t < \infty, \end{array} \right. \end{align*} $$

then $\mu $ is $(\alpha, s)$ -logarithmic Carleson measure [Reference Zhao29]; if $\alpha =0$ , the $(0, s)$ -logarithmic Carleson measure coincides with s-Carleson measure.

Theorem 2.1 Suppose K satisfies (2.2) for some $0<\sigma <2$ and $\mu $ is a positive Borel measure on $\mathbb {D}$ . Then $\mu $ is a K-Carleson measure if and only if

(2.4) $$ \begin{align} \underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{1}{K(1-|a|^2)}\int_{\mathbb{D}} \bigg(\frac{1-|a|^2}{|1-\bar{a}z|}\bigg)^p\mathrm{d}\mu(z)<\infty, \quad \sigma\leq p<\infty. \end{align} $$

Proof Assume that (2.4) holds. For an interval $I\subseteq \mathbb {T}$ , let $e^{i\theta }$ , $\theta \in [0,2\pi)$ , be the midpoint of I and $a=(1-|I|)e^{i\theta }$ . Note that

$$ \begin{align*}|1-\bar{a}z|\approx|I|\approx1-|a|^2, \quad z\in S(I). \end{align*} $$

By the doubling condition, we have

$$ \begin{align*}K(1-|a|^2)\approx K(|I|), \quad z\in S(I). \end{align*} $$

Thus,

$$ \begin{align*} \frac{\mu(S(I))}{K(|I|)}\approx\frac{1}{K(|I|)}\int_{S(I)}\bigg(\frac{1-|a|^2}{|1-\bar{a}z|}\bigg)^p\mathrm{d}\mu(z) \lesssim\frac{1}{K(1-|a|^2)}\int_{\mathbb{D}}\bigg(\frac{1-|a|^2}{|1-\bar{a}z|}\bigg)^p\mathrm{d}\mu(z). \end{align*} $$

Therefore, $\mu $ is a K-Carleson measure.

On the other hand, suppose $\mu $ is K-Carleson measure and $2^nI$ denotes the arc with the same center as I and the length $2^n|I|$ . Then we have the following estimate:

$$ \begin{align*} 2^{n-1}(1-|a|^2)\lesssim|1-\bar{a}z|, \quad z\in S(2^{n}I)\backslash S(2^{n-1}I), \end{align*} $$

which implies for $\sigma \leq p<\infty $

$$ \begin{align*} \int_{\mathbb{D}}\bigg(\frac{1-|a|^2}{|1-\bar{a}z|}\bigg)^p\mathrm{d}\mu(z) &\lesssim\int_{S(I)}\mathrm{d}\mu(z)+ \sum^{\infty}_{n=1}2^{-np}\int_{S(2^{n}I)\backslash S(2^{n-1}I)}\mathrm{d}\mu(z)\\ &\lesssim\mu(S(I))+\sum^{\infty}_{n=1}2^{-np}\mu(S(2^{n}I))\\ &\lesssim K(|I|)+\sum^{\infty}_{n=1}2^{-np}K(2^{n}|I|). \end{align*} $$

By Lemma B, there exists a sufficiently small positive constant c such that

$$ \begin{align*} K(2^{n}|I|)\lesssim 2^{n(\sigma-c)}K(|I|),\quad n=1,2,\dots \end{align*} $$

Consequently,

$$ \begin{align*} \int_{\mathbb{D}}\bigg(\frac{1-|a|^2}{|1-\bar{a}z|}\bigg)^p\mathrm{d}\mu(z) \lesssim K(|I|)+\sum^{\infty}_{n=1}2^{-(p-\sigma+c)n}K(|I|)\approx K(1-|a|^2). \end{align*} $$

This completes the proof of Theorem 2.1. ▪

Note that Theorem 2.1 gives a new characterization of $\mathcal {D}^{s}_{K}$ space in terms of K-Carleson measure by replacing $\mathrm {d}\mu (z)$ by $|f^{\prime }(z)|^2(1-|z|^2)^s\mathrm {d}A(z)$ and putting $p=2s$ .

Theorem 2.2 Suppose K satisfies (2.2) for some $0<\sigma <2$ and $\frac {\sigma }{2}\leq s<\infty $ . Then $f\in \mathcal {D}^{s}_{K}$ if and only if

$$ \begin{align*}\underset{I\subseteq \mathbb{T}}{\mathrm{sup}}\frac{1}{K(|I|)}\int_{S(I)}|f^{\prime}(z)|^{2}(1-|z|^{2})^{s}\mathrm{d}A(z)<\infty. \end{align*} $$

3 The embedding map from $\mathcal {D}^{s}_{K}$ to $\mathcal {T}^s_{K}(\mu)$

Let X be a space of analytic functions in $\mathbb D$ . For $0 <p<\infty $ , a positive Borel measure $\mu $ on $\mathbb {D}$ is said to be a p-Carleson measure for the space X if the embedding map $I: X \mapsto L^p(d\mu)$ is a bounded operator, i.e., there is a constant $C>0$ such that

(3.1) $$ \begin{align} \int_{\mathbb{D}}|f(z)|^p\,d\mu(z)\le C\|f\|^p_{X} \end{align} $$

for all functions $f\in X$ . When the parameter $p=2$ , we always simply leave out the p in front of the Carleson measure. Note that the following two notations are different:

  1. (i) $\mu $ is a p-Carleson measure on $\mathbb D$ and

  2. (ii) $\mu $ is a p-Carleson measure for a space X.

Carleson’s embedding theorem [Reference Carleson3] shows that $\mu $ is a Carleson measure on $\mathbb D$ if and only if $\mu $ is a Carleson measure for $H^2$ . Similar results for some Bergman spaces and Dirichlet type spaces can be found in [Reference Oleinik13Reference Stegenga21Reference Wu22]. However, Stegenga [Reference Stegenga21] proved that $\mu $ is a Carleson measure for $\mathcal {D}_s$ implies that $\mu $ is an s-Carleson measure on $\mathbb D$ for $0<s<\infty $ but the converse is true only for $s\ge 1$ . There are many research works on these topics for different function spaces; see, for example, [Reference Girela and Peláez7Reference Kerman and Sawyer8Reference Liu, Lou and Zhu11Reference Xiao27].

For $0<s<\infty $ and a positive Borel measure $\mu $ on $\mathbb {D}$ , we define a new space $\mathcal {T}^s_{K}(\mu)$ consisting of functions $f\in H(\mathbb {D})$ for which

$$ \begin{align*}\|f\|^2_{\mathcal{T}^s_{K}(\mu)}=\underset{a\in\mathbb{D}}{\mathrm{sup}}\frac{1}{K(1-|a|^2)} \int_{\mathbb{D}}|f(z)-f(a)|^2\bigg(\frac{1-|a|^2}{|1-\bar{a}z|}\bigg)^{2s}\mathrm{d}\mu(z)<\infty. \end{align*} $$

We will consider the embedding map $I: \mathcal {D}^s_K\mapsto \mathcal {T}^s_{K}(\mu)$ and find sufficient or necessary condition for the operator I to be bounded. As an extension of results of [Reference Galanopoulos, Merchán and Siskakis6Reference Liu, Lou and Zhu11Reference Pau and Peláez15Reference Qian and Li19Reference Xiao28], we state the following theorem.

Theorem 3.1 Suppose K satisfies (2.2) for some $0<\sigma <2$ and $\frac {\sigma }{2}\leq s<\infty $ . For a positive Borel measure $\mu $ on $\mathbb {D}$ , the following results are true.

  1. (i) If $I: \mathcal {D}^{s}_{K} \mapsto \mathcal {T}^s_{K}(\mu)$ is bounded, then $\mu $ is an s-Carleson measure on $\mathbb D$ .

  2. (ii) If $\mu $ is a Carleson measure for $\mathcal {D}_s$ , then $I: \mathcal {D}^{s}_{K} \mapsto \mathcal {T}^s_{K}(\mu)$ is bounded.

The following Lemmas will be used in the proof of Theorem 3.1.

Lemma C ([Reference Ortega and Fàbrega14Reference Pau and Zhao17])

If $s>-1$ , $r, t>0$ with $r+t-s-2>0$ , then

$$ \begin{align*} \int_{\mathbb{D}}\frac{(1-|z|^2)^s}{|1-\bar{a}z|^r|1-\bar{b}z|^t}\mathrm{d}A(z)\lesssim\left\{ \begin{array}{@{}ll} \frac{1}{|1-\bar{a}b|^{r+t-s-2}}, & r,t < 2+s,\\ \frac{1}{(1-|a|^2)^{r-s-2}|1-\bar{a}b|^{t}}, & t < 2+s < r,\\ \frac{1}{(1-|a|^2)^{r-s-2}|1-\bar{a}b|^{t}} +\frac{1}{(1-|b|^2)^{t-s-2}|1-\bar{a}b|^{r}}, & r,t > 2+s,\\ \end{array} \right. \end{align*} $$

for all $a,b\in \mathbb {D}$ .

Lemma 3.1 Suppose K satisfies (2.2) for some $0<\sigma <2$ and $\frac {\sigma }{2}\leq s<\infty $ . Then the functions

$$ \begin{align*}f_{w}(z)=\frac{(1-|w|^2)^sK^{\frac{1}{2}}(1-|w|^2)}{(1-\bar{w}z)^{\frac{3s}{2}}}, \quad w, z\in\mathbb{D}, \end{align*} $$

belong to $\mathcal {D}^{s}_{K}$ and

(3.2) $$ \begin{align} \underset{w\in \mathbb{D}}{\mathrm{sup}} \|f_w\|_{\mathcal{D}^s_K}<\infty. \end{align} $$

Proof By a simple calculation,

$$ \begin{align*} \|f_w\|_{\mathcal{D}^s_K}^2 \lesssim\underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{(1-|a|^2)^{2s}K(1-|w|^2)(1-|w|^2)^{2s}}{K(1-|a|^2)} \int_{\mathbb{D}}\frac{(1-|z|^2)^s}{|1-\bar{w}z|^{3s+2}|1-\bar{a}z|^{2s}}\mathrm{d}A(z). \end{align*} $$

Case 1. For $\frac {\sigma }{2}\leq s<2$ , it follows from Lemma C that

$$ \begin{align*} \int_{\mathbb{D}}\frac{(1-|z|^2)^s}{|1-\bar{w}z|^{3s+2}|1-\bar{a}z|^{2s}}\mathrm{d}A(z) \lesssim\frac{1}{(1-|w|^2)^{2s}|1-\bar{a}w|^{2s}}. \end{align*} $$

Thus,

$$ \begin{align*} \|f_w\|_{\mathcal{D}^s_K}^2 \lesssim\underset{a\in\mathbb{D}}{\mathrm{sup}}\bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{2s}\frac{K(|1-\bar{a}w|)}{K(1-|a|^2)} \lesssim\underset{a\in \mathbb{D}}{\mathrm{sup}}\bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{2s-\sigma}\lesssim 1. \end{align*} $$

Case 2. For $s=2$ , choosing a number $\delta, 0<\delta \leq \sigma $ , and applying Lemma C, we have

$$ \begin{align*} \int_{\mathbb{D}}\frac{(1-|z|^2)^2}{|1-\bar{w}z|^{8}|1-\bar{a}z|^{4}}\mathrm{d}A(z) &\lesssim\int_{\mathbb{D}}\frac{(1-|z|^2)^{2-\delta}}{|1-\bar{w}z|^{8-\delta}|1-\bar{a}z|^{4}}\mathrm{d}A(z)\\ &\lesssim\frac{1}{(1-|w|^2)^{4}|1-\bar{a}w|^{4}}+\frac{1}{(1-|a|^2)^{\delta}|1-\bar{a}w|^{8-\delta}}, \end{align*} $$

and hence

$$ \begin{align*} \|f_w\|_{\mathcal{D}^s_K}^2 &\lesssim\underset{a\in\mathbb{D}}{\mathrm{sup}}\left(\bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{4}+ \bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{4-\delta}\right)\frac{K(|1-\bar{a}w|)}{K(1-|a|^2)}\\ &\lesssim\underset{a\in \mathbb{D}}{\mathrm{sup}}\left(\bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{4-\sigma}+ \bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{4-\sigma-\delta}\right)\lesssim 1. \end{align*} $$

Case 3. For $2< s<\infty $ , we similarly obtain that

$$ \begin{align*} \|f_w\|_{\mathcal{D}^s_K}^2 &\lesssim\underset{a\in\mathbb{D}}{\mathrm{sup}}\left(\bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{2s}+ \bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{s+2}\right)\frac{K(|1-\bar{a}w|)}{K(1-|a|^2)}\\ &\lesssim\underset{a\in \mathbb{D}}{\mathrm{sup}}\left(\bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{2s-\sigma}+ \bigg(\frac{1-|a|^2}{|1-\bar{a}w|}\bigg)^{s+2-\sigma}\right)\lesssim 1. \end{align*} $$

Therefore, (3.2) is checked. ▪

The following result gives an estimate on the growth of a function f in $\mathcal {D}^{s}_{K}$ .

Lemma 3.2 Suppose K satisfies (2.2) for some $0<\sigma <2$ and $\frac {\sigma }{2}\leq s<\infty $ . Then for any $f\in \mathcal {D}^{s}_{K}$ ,

(3.3) $$ \begin{align} |f(z)-f(0)|\lesssim\|f\|_{\mathcal{D}^{s}_{K}}\bigg(\frac{K(1-|z|^2)}{(1-|z|^2)^s}\bigg)^{\frac{1}{2}}, \quad z\in\mathbb{D}. \end{align} $$

Proof Let $\mathbb {D}(w,r)=\{z\in \mathbb {D}: |\varphi _{w}(z)| < r \}, w\in \mathbb {D}, 0 < r < 1$ . Using the submean value property of $|f^{\prime }(z)|^{2}$ , we get

$$ \begin{align*} |f^{\prime}(w)|^{2}&\lesssim\frac{1}{(1-|w|^2)^{2}}\int_{\mathbb{D}(w,r)}|f^{\prime}(z)|^{2}\mathrm{d}A(z)\\ &\lesssim\frac{1}{(1-|w|^2)^{2}}\int_{\mathbb{D}}|f^{\prime}(z)|^{2}(1-|\varphi_{w}(z)|^2)^{s}\mathrm{d}A(z). \end{align*} $$

Hence,

$$ \begin{align*}|f^{\prime}(w)|\lesssim\frac{K^{\frac{1}{2}}(1-|w|^2)}{(1-|w|^2)^{\frac{s}{2}+1}}\|f\|_{\mathcal{D}^{s}_{K}} \end{align*} $$

and

(3.4) $$ \begin{align} |f(w)-f(0)|=\bigg|w\int^1_0f^{\prime}(wt)\mathrm{d}t\bigg|\lesssim\|f\|_{\mathcal{D}^{s}_{K}} \int^1_0\frac{K^{\frac{1}{2}}(1-|wt|^2)}{(1-|wt|^2)^{\frac{s}{2}+1}}|w|\mathrm{d}t. \end{align} $$

Under the preliminary assumption that K satisfies condition (2.2) for some $\sigma $ , there exists a sufficiently small positive constant c such that

$$ \begin{align*} \frac{K(1-|wt|)}{K(1-|w|)}\leq\bigg(\frac{1-|wt|}{1-|w|}\bigg)^{\sigma-c}. \end{align*} $$

Consequently, the integral on the right-hand side of (3.4) is dominated by

$$ \begin{align*} \frac{K^{\frac{1}{2}}(1-|w|)}{(1-|w|)^{\frac{\sigma-c}{2}}}\int^1_0(1-|wt|)^{\frac{\sigma-c-s}{2}-1}|w|\mathrm{d}t \lesssim\bigg(\frac{K(1-|w|)}{(1-|w|)^s}\bigg)^{\frac{1}{2}}. \end{align*} $$

Here, we choose $0<c<\sigma $ such that $\sigma -s-c>0$ for $\sigma -s>0$ and choose $0<c<\sigma $ such that $\sigma -s-c<0$ for $\sigma -s\le 0$ . Thus, we obtain the desired growth inequality (3.3). ▪

Proof Proof of Theorem 3.1

Suppose condition (i) holds; that is there exists a constant $C>0$ such that

(3.5) $$ \begin{align} \|f\|_{\mathcal{T}^s_{K}(\mu)}\le C\|f\|_{\mathcal{D}^s_K} \end{align} $$

holds for all $f\in \mathcal {D}^s_K$ . For $I\subseteq \mathbb {T}$ , let $e^{i\theta }$ , $\theta \in [0,2\pi)$ , be the midpoint of I. Choose $w=(1-2|I|)e^{i\theta }$ and $|I|<\frac {1}{8}$ . A simple geometric argument shows that

(3.6) $$ \begin{align} 2|I|\leq|1-\bar{w}z|\leq\frac{\sqrt{37}}{2}|I|, \quad z\in S(I). \end{align} $$

Consider the test function $f_{w}\in \mathcal {D}^s_K$ of Lemma 3.1, we have

$$ \begin{align*} \|f_{w}\|_{ \mathcal{T}^s_{K}(\mu)}\lesssim\|f_{w}\|_{\mathcal{D}^{s}_{K}}\lesssim\underset{w\in \mathbb{D}}{\mathrm{sup}} \|f_w\|_{\mathcal{D}^s_K}<\infty. \end{align*} $$

By (3.6), we obtain

$$ \begin{align*} \|f_w\|^{2}_{ \mathcal{T}^s_{K}(\mu)} &=\underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{1}{K(1-|a|^2)}\int_{\mathbb{D}}|f_w(z)-f_w(a)|^2 \bigg(\frac{1-|a|^2}{|1-\bar{a}z|}\bigg)^{2s}\mathrm{d}\mu(z)\\ &\geq(1-|w|^2)^{2s}\int_{\mathbb{D}}\bigg|\frac{1}{(1-\bar{w}z)^{\frac{3s}{2}}}-\frac{1}{(1-|w|^2)^{\frac{3s}{2}}} \bigg|^2\bigg(\frac{1-|w|^2}{|1-\bar{w}z|}\bigg)^{2s}\mathrm{d}\mu(z)\\ &\geq|I|^{2s}\int_{S(I)}\bigg(\frac{1}{|1-\bar{w}z|^{\frac{3s}{2}}}-\frac{1}{(1-|w|^2)^{\frac{3s}{2}}}\bigg)^2\mathrm{d}\mu(z)\\ &\geq\frac{1}{|I|^s}\int_{S(I)}\bigg(\frac{1}{(\frac{\sqrt{37}}{2})^{\frac{3s}{2}}}-\frac{1}{(\frac{7}{2})^{\frac{3s}{2}}} \bigg)^2\mathrm{d}\mu(z)\\ &\gtrsim\frac{\mu(S(I))}{|I|^s}. \end{align*} $$

Combining this with (3.5), we find

$$ \begin{align*} \mu(S(I))\lesssim{|I|^s}, \end{align*} $$

which means that $\mu $ is an s-Carleson measure.

To prove (ii), we first show that if $f\in \mathcal {D}^{s}_{K}$ then

(3.7) $$ \begin{align} F_{K,a}(z)=\frac{(1-|a|^2)^{s}}{(K(1-|a|^2))^{\frac12}}\frac{f(z)-f(a)}{(1-\bar{a}z)^s}\in \mathcal{D}_s, \quad a\in \mathbb{D}, \end{align} $$

and

(3.8) $$ \begin{align} \|F_{K,a}\|_{\mathcal{D}_s}\lesssim \|f\|_{\mathcal{D}^s_K}, \quad a\in \mathbb{D}. \end{align} $$

Thus, if $\mu $ is a Carleson measure for $\mathcal {D}_s$ , then there is a constant $C>0$ such that

$$ \begin{align*} \int_{\mathbb{D}}|F_{K,a}(z)|^{2}\mathrm{d}\mu(z)\leq C\|F_{K,a}\|^2_{ \mathcal{D}_s}\lesssim \|f\|_{\mathcal{D}^s_K}^2 \end{align*} $$

holds for all $f\in \mathcal {D}_s$ . Collecting all estimates above, we have that

$$ \begin{align*} \|f\|_{ \mathcal{T}^s_{K}(\mu)}\lesssim\|f\|_{\mathcal{D}^{s}_{K}}, \end{align*} $$

which is the desired conclusion.

Now, we are going to check (3.7) and (3.8). In fact,

$$ \begin{align*} \|F_{K,a}\|^2_{\mathcal{D}_s} &=\frac{(1-|a|^2)^{2s}}{K(1-|a|^2)}\left(|f(a)-f(0)|^2+\int_{\mathbb{D}}\bigg|\frac{\mathrm{d}}{\mathrm{d}z} \bigg(\frac{f(z)-f(a)}{(1-\bar{a}z)^s}\bigg)\bigg|^{2}(1-|z|^{2})^{s}\mathrm{d}A(z)\right)\\ &=\frac{(1-|a|^2)^{2s}}{K(1-|a|^2)}|f(0)-f(a)|^2+I(a). \end{align*} $$

By Lemma 3.2, the first term in the last sum is

$$ \begin{align*} \frac{(1-|a|^2)^{2s}}{K(1-|a|^2)}|f(a)-f(0)|^2\lesssim\frac{(1-|a|^2)^s}{K(1-|a|^2)}|f(a)-f(0)|^2 \lesssim\|f\|^2_{\mathcal{D}^{s}_{K}}. \end{align*} $$

For the second term, we have

$$ \begin{align*} I(a)&\lesssim\frac{(1-|a|^2)^s}{K(1-|a|^2)}\int_{\mathbb{D}} |f^{\prime}(z)|^2(1-|\varphi_a(z)|^{2})^{s}\mathrm{d}A(z) \\ & \quad + \frac{(1-|a|^2)^s}{K(1-|a|^2)}\int_{\mathbb{D}}\bigg|\frac{f(z)-f(a)}{1-\bar{a}z}\bigg|^{2}(1-|\varphi_a(z)|^{2})^{s} \mathrm{d}A(z)\\ &\lesssim\|f\|^2_{\mathcal{D}^{s}_{K}}+\frac{(1-|a|^2)^s}{K(1-|a|^2)}\int_{\mathbb{D}} |f\circ\varphi_a(z)-f\circ\varphi_a(0)|^{2}\frac{(1-|z|^{2})^{s}}{|1-\bar{a}z|^2}\mathrm{d}A(z)\\ &=\|f\|^2_{\mathcal{D}^{s}_{K}}+J(a). \end{align*} $$

By the reproducing formula of Rochberg and Wu [Reference Rochberg and Wu20], we get

$$ \begin{align*} f\circ\varphi_a(z)-f\circ\varphi_a(0)=\int_{\mathbb{D}}(f\circ\varphi_a)^{\prime}(\zeta) K(\zeta,z)(1-|\zeta|^2)^{s+1}\mathrm{d}A(\zeta), \end{align*} $$

where $s>-1$ and

$$ \begin{align*} K(\zeta,z)=\frac{1-(1-\bar{\zeta}z)^{s+2}}{\bar{\zeta}(1-\bar{\zeta}z)^{s+2}}. \end{align*} $$

Obviously,

$$ \begin{align*} \underset{\zeta,z\in \mathbb{D}}{\mathrm{sup}}\bigg|\frac{1-(1-\bar{\zeta}z)^{s+2}}{\bar{\zeta}}\bigg|\leq C \end{align*} $$

holds for some constant $C>0$ . Choosing $0 < \varepsilon < s $ and by the Cauchy–Schwarz inequality,

$$ \begin{align*} &|f\circ\varphi_a(z)-f\circ\varphi_a(0)|^2\\ &\quad \lesssim\int_{\mathbb{D}}|(f\circ\varphi_a)^{\prime}(\zeta)|^2\frac{(1-|\zeta|^2)^{s+2+\varepsilon}}{|1-\bar{\zeta}z|^{s+2}} \mathrm{d}A(\zeta) \int_{\mathbb{D}}\frac{(1-|\zeta|^2)^{s-\varepsilon}}{|1-\bar{\zeta}z|^{s+2}}\mathrm{d}A(\zeta)\\ &\quad \lesssim\frac{1}{(1-|z|^2)^{\varepsilon}}\int_{\mathbb{D}}|(f\circ\varphi_a)^{\prime}(\zeta)|^2 \frac{(1-|\zeta|^2)^{s+\varepsilon}}{|1-\bar{\zeta}z|^{s}}\mathrm{d}A(\zeta). \end{align*} $$

By Fubini’s theorem and Lemma C, we get

$$ \begin{align*} J(a)&\lesssim\frac{(1-|a|^2)^s}{K(1-|a|^2)}\int_{\mathbb{D}}\int_{\mathbb{D}}|(f\circ\varphi_a)^{\prime}(\zeta)|^2 \frac{(1-|\zeta|^2)^{s+\varepsilon}}{|1-\bar{\zeta}z|^{s}}\mathrm{d}A(\zeta)\frac{(1-|z|^{2})^{s-\varepsilon}}{|1-\bar{a}z|^2} \mathrm{d}A(z)\\ &\approx\frac{(1-|a|^2)^s}{K(1-|a|^2)} \int_{\mathbb{D}}|(f\circ\varphi_a)^{\prime}(\zeta)|^2(1-|\zeta|^2)^{s+\varepsilon}\mathrm{d}A(\zeta) \int_{\mathbb{D}}\frac{(1-|z|^{2})^{s-\varepsilon}}{|1-\bar{\zeta}z|^{s}|1-\bar{a}z|^2}\mathrm{d}A(z)\\ &\lesssim\frac{(1-|a|^2)^s}{K(1-|a|^2)}\int_{\mathbb{D}}|(f\circ\varphi_a)^{\prime}(\zeta)|^2(1-|\zeta|^2)^{s}\mathrm{d}A(\zeta)\\ &\lesssim\|f\|^2_{\mathcal{D}^{s}_{K}}. \end{align*} $$

Therefore, (3.7) and (3.8) hold.

For $1\leq s<\infty $ , we know that $\mu $ is a Carleson measure for $\mathcal {D}_{s}$ if and only if $\mu $ is an s-Carleson measure on $\mathbb {D}$ ; see [Reference Stegenga21, Theorem 1.2]. However, this is no longer true for $0<s<1$ ; see [Reference Aleman, Carlsson and Persson1Reference Arcozzi, Rochberg and Sawyer2]. Thus, we obtain the following result.

Theorem 3.2 Suppose K satisfies (2.2) for some $0<\sigma <2$ and $1\leq s<\infty $ . For a positive Borel measure $\mu $ on $\mathbb {D}$ , the embedding map $I: \mathcal {D}^{s}_{K} \mapsto \mathcal {T}^s_{K}(\mu)$ is bounded if and only if $\mu $ is an s-Carleson measure.

Remark 3.1

  1. (i) If $K(t)=t^{s\lambda }$ , $0<s, \lambda <1$ , Theorem 3.1 gives [Reference Galanopoulos, Merchán and Siskakis6, Theorems 3.4 and 3.5(2)].

  2. (ii) If $K(t)=t^s$ , Theorem 3.1 implies [Reference Liu, Lou and Zhu11, Theorem 5] and [Reference Xiao28, Theorem 1.1] (or [Reference Pau and Peláez15, Theorem 1]).

  3. (iii) If K satisfies condition (2.2) for $\sigma =1$ , Theorem 3.2 was obtained by Qian and Li [Reference Qian and Li19, Theorem 2] for $s=1$ and $\mathrm {d}\mu (z)=|g^{\prime }(z)|^2(1-|z|^2)\mathrm {d}A(z)$ .

4 Fractional order derivatives and $\mathcal{D}_K^s$ spaces

For fixed $b>1$ , consider the t-order derivative of a function $f\in H(\mathbb {D})$ defined by

$$ \begin{align*} f^{(t)}(z)=\frac{\Gamma(b+t)}{\pi\Gamma(b)}\int_{\mathbb{D}} \frac{{\bar{w}}^{[t-1]}(1-|w|^2)^{b-1}f^{\prime}(w)}{(1-\bar{w}z)^{b+t}}\mathrm{d}A(w), \quad b+t>0. \end{align*} $$

Here, $[x]$ stands for the smallest integer greater than or equal to $x\in \mathbb {R}$ , and $\Gamma (\cdot)$ is the Gamma function. Note that $(f^{(t)})^{\prime }=f^{(t+1)}$ .

A direct computation yields

$$ \begin{align*} (z^n)^{(t)}=\left\{ \begin{array}{@{}ll} \frac{\Gamma(b+n+t-1-[t-1])\Gamma(n+1)}{\Gamma(b+n)\Gamma(n-[t-1])}z^{n-1-[t-1]},& n\geq[t-1]+1,\\ 0,& n<[t-1]+1.\\ \end{array} \right. \end{align*} $$

It is easy to conclude that the t-fractional order derivative is just the usual tth order derivative if t is a positive integer.

In [Reference Wu and Xie23], Wu and Xie revealed that a function $f\in \mathcal Q_s$ can be viewed as its fractional order derivative in a Morrey space. In [Reference Wulan and Zhou24], Zhou and Wulan showed a connection between $H^2_K$ and $\mathcal Q_K$ by using the fractional order derivative. In this section, a characterization of $\mathcal {D}^{s}_K$ in terms of the fractional order derivative is given. As a by-product, we build a bridge between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ by the fractional order derivatives.

Theorem 4.1 Suppose K satisfies (2.2) for some $0<\sigma <2$ and $\frac {\sigma }{2}\leq s<\infty $ . Then $f\in \mathcal {D}_K^s$ if and only if

$$ \begin{align*} |f^{(t)}(z)|^2(1-|z|^2)^{2t-2+s}\mathrm{d}A(z),\quad \max\left\{0, \frac{1-s}{2},\frac{\sigma-s}{2}\right\} < t < \infty \end{align*} $$

is a K-Carleson measure.

Theorem 4.1 actually gives a relationship between two spaces $\mathcal {D}_K^{s_1}$ and $\mathcal {D}_K^{s_2}$ as follows.

Corollary 4.1 Suppose K satisfies (2.2) for some $0<\sigma <2$ . For $\frac {\sigma }{2}\leq s_1, s_2<\infty $ with $s_1< s_2+2$ , the following statements are equivalent:

  1. (i) $f\in \mathcal {D}_K^{s_1}$ .

  2. (ii) $f^{(\frac {s_2-s_1}{2})}\in \mathcal {D}^{s_2}_K$ .

The following lemma will be used in the proof of Theorem 4.1.

Lemma 4.1 Suppose K satisfies (2.2) for some $0<\sigma <2$ . For $0\leq s<\infty $ , let

$$ \begin{align*} \max\bigg\{0, \frac{1-s}{2}, \frac{\sigma-s}{2}\bigg\} < \alpha < \infty, \quad \frac{1+s}{2} < b < \infty. \end{align*} $$

For $f\in L^1(\mathbb {D}, \mathrm {d}A)$ , define

$$ \begin{align*} Tf(z)=\int_{\mathbb{D}}\frac{(1-|w|^2)^{b-1}}{|1-\bar{w}z|^{\alpha+b}}f(w)\mathrm{d}A(w), \quad z\in\mathbb{D}. \end{align*} $$

If $|f(z)|^2(1-|z|^2)^{s}\mathrm {d}A(z)$ is a K-Carleson measure, then

$$ \begin{align*} |Tf(z)|^2(1-|z|^2)^{2\alpha-2+s}\mathrm{d}A(z) \end{align*} $$

is also a K-Carleson measure.

Proof For given s, write

$$ \begin{align*} \mathrm{d}\mu_f(z)=|f(z)|^2(1-|z|^2)^{s}\mathrm{d}A(z) \end{align*} $$

and

$$ \begin{align*} \mathrm{d}\mu_{Tf}(z)=|Tf(z)|^2(1-|z|^2)^{2\alpha-2+s}\mathrm{d}A(z). \end{align*} $$

We verify that $\|\mu _f\|_K<\infty $ yields $\|\mu _{Tf}\|_K<\infty $ . To this end, for $I\subset \mathbb {T}$ , we set $2^nI$ as the subarc of $\mathbb {T}$ with the same center as I and length $2^n|I|$ for $n\in \mathbb {N^+}$ . Then

$$ \begin{align*} \mu_{Tf}(S(I))&=\int_{S(I)}|Tf(z)|^{2}(1-|z|^{2})^{2\alpha-2+s}\mathrm{d}A(z)\\ &\leq\int_{S(I)} \bigg(\bigg\{\int_{S(2I)}+\int_{\mathbb{D}\backslash S(2I)}\bigg\}\frac{|f(w)|(1-|w|^{2})^{b-1}}{|1-\bar{w}z|^{\alpha+b}}\mathrm{d}A(w)\bigg)^2 \frac{\mathrm{d}A(z)}{(1-|z|^{2})^{2-s-2\alpha}}\\ &\lesssim E_1+E_2, \end{align*} $$

where

$$ \begin{align*} E_1=\int_{S(I)}\bigg(\int_{S(2I)}\frac{|f(w)|(1-|w|^{2})^{b-1}}{|1-\bar{w}z|^{\alpha+b}}\mathrm{d}A(w)\bigg)^2 \frac{\mathrm{d}A(z)}{(1-|z|^{2})^{2-s-2\alpha}} \end{align*} $$

and

$$ \begin{align*} E_2=\int_{S(I)} \bigg(\int_{\mathbb{D}\backslash S(2I)}\frac{|f(w)|(1-|w|^{2})^{b-1}}{|1-\bar{w}z|^{\alpha+b}}\mathrm{d}A(w)\bigg)^2 \frac{\mathrm{d}A(z)}{(1-|z|^{2})^{2-s-2\alpha}}. \end{align*} $$

For $E_1$ , we shall apply the classical Schur’s test [Reference Zhu30, Corollary 3.7] to a bounded operator on $L^2(\mathbb {D})$ . Indeed, we consider

$$ \begin{align*} H(z,w)=\frac{(1-|z|^{2})^{\alpha-1+\frac{s}{2}}(1-|w|^{2})^{b-1-\frac{s}{2}}}{|1-\bar{w}z|^{\alpha+b}} \end{align*} $$

and the integral operator

$$ \begin{align*} T_{H}g(z)=\int_{\mathbb{D}}|g(w)|H(z,w)\mathrm{d}A(w),\,\, g\in L^2(\mathbb{D}). \end{align*} $$

Using [Reference Zhu30, Lemma 3.10], we derive that for

$$ \begin{align*} \mathrm{max}\big\{-\alpha-\frac{s}{2}, \frac{s}{2}-b\big\}<\gamma<\mathrm{min}\big\{\alpha-1+\frac{s}{2}, b-1-\frac{s}{2}\big\}, \end{align*} $$

we obtain that

$$ \begin{align*} \int_{\mathbb{D}}H(z,w)(1-|w|^2)^{\gamma}\mathrm{d}A(w)\lesssim(1-|z|^2)^{\gamma} \end{align*} $$

and

$$ \begin{align*} \int_{\mathbb{D}}H(z,w)(1-|z|^2)^{\gamma}\mathrm{d}A(z)\lesssim(1-|w|^2)^{\gamma}. \end{align*} $$

Accordingly, the operator $T_{H}$ is bounded from $L^2(\mathbb {D})$ to $L^2(\mathbb {D})$ . Applying this to the function

$$ \begin{align*} g(w)=(1-|w|^2)^{\frac{s}{2}}|f(w)|\mathcal{X}_{S(2I)}(w), \end{align*} $$

where $\mathcal {X}_{S(2I)}$ is the characteristic function of $S(2I)$ , we get

$$ \begin{align*} E_1\lesssim\int_{\mathbb{D}}\bigg(\int_{\mathbb{D}}|g(w)|H(z,w)\mathrm{d}A(w)\bigg)^2\mathrm{d}A(z)\lesssim \int_{\mathbb{D}}|g(z)|^2\mathrm{d}A(z)\lesssim\|\mu_f\|_K K(|I|). \end{align*} $$

To handle $E_2$ , we note that both

$$ \begin{align*} 2^n|I|\lesssim|1-\bar{w}z|, \quad z\in S(I),\,\, w\in S(2^{n+1}I)\backslash S(2^{n}I), \end{align*} $$

and

$$ \begin{align*} \int_{S(2^nI)}(1-|z|^2)^{\tau-2}\mathrm{d}A(z)\lesssim(2^n|I|)^\tau, \quad \tau>1, \end{align*} $$

hold for all $n\in \mathbb {N}$ . Using $\alpha>\mathrm {max}\big \{0, \frac {1-s}{2}, \frac {\sigma -s}{2}\big \}$ , we get

$$ \begin{align*} E_2 &\lesssim\int_{S(I)} \bigg(\sum_{n=1}^{\infty}(2^n|I|)^{-(\alpha+b)}\int_{S(2^{n+1}I)}\frac{|f(w)|}{(1-|w|^{2})^{1-b}} \mathrm{d}A(w)\bigg)^2\frac{\mathrm{d}A(z)}{(1-|z|^{2})^{2-s-2\alpha}}\\ &\lesssim|I|^{2\alpha+s} \bigg(\sum_{n=1}^{\infty}(2^n|I|)^{-(\alpha+b)}\int_{S(2^{n+1}I)}\frac{|f(w)|}{(1-|w|^{2})^{1-b}}\mathrm{d}A(w)\bigg)^2. \end{align*} $$

Note that $\|\mu _f\|_K<\infty $ . By Hölder’s inequality and Remark 2.1 (i),

$$ \begin{align*} E_2&\lesssim|I|^{2\alpha+s} \bigg(\sum_{n=1}^{\infty}(2^n|I|)^{-\alpha-\frac{s}{2}}(\mu_f(S(2^{n+1}I)))^{\frac{1}{2}}\bigg)^2\\ &\lesssim\|\mu_f\|_K\bigg(\sum_{n=1}^{\infty}(2^n)^{-\alpha-\frac{s}{2}}K^{\frac{1}{2}}(2^{n+1}|I|)\bigg)^2\\ &\lesssim K(|I|)\|\mu_f\|_K\bigg(\sum_{n=1}^{\infty}2^{-n(\alpha-\frac{\sigma-s}{2})}\bigg)^2\\ &\lesssim K(|I|)\|\mu_f\|_K. \end{align*} $$

The foregoing estimates on $E_1$ and $E_2$ give $\mu _{Tf}$ is a K-Carleson measure. ▪

Now we are ready to prove Theorem 4.1. Let $f\in \mathcal {D}_K^{s}$ . By Theorem 2.2, we know that $|f^{\prime }(z)|^{2}(1-|z|^{2})^{s}\mathrm {d}A(z)$ is a K-Carleson measure. Since

$$ \begin{align*} |f^{(t)}(z)|\leq\frac{\Gamma(b+t)}{\pi\Gamma(b)}\int_{\mathbb{D}} \frac{(1-|w|^2)^{b-1}|f^{\prime}(w)|}{|1-\bar{w}z|^{b+t}}\mathrm{d}A(w), \quad \mathrm{max}\left\{1,\frac{1+s}{2}\right\} < b < \infty, \end{align*} $$

we obtain by Lemma 4.1 that

$$ \begin{align*} |f^{(t)}(z)|^2(1-|z|^2)^{2t-2+s}\mathrm{d}A(z) \end{align*} $$

is a K-Carleson measure.

Conversely, suppose $|f^{(t)}(z)|^2(1-|z|^2)^{2t-2+s}\mathrm {d}A(z)$ is a K-Carleson measure. Now we consider the function:

$$ \begin{align*} g(z)=\frac{\Gamma(b+1)z^{[t-1]}}{\pi\Gamma(b+t-1)}\int_{\mathbb{D}} \frac{(1-|w|^2)^{b+t-2}}{(1-\bar{w}z)^{b+1}}f^{(t)}(w)\mathrm{d}A(w). \end{align*} $$

It follows from Lemma 4.1 that $|g(z)|^2(1-|z|^2)^{s}\mathrm {d}A(z)$ is a K-Carleson measure. To establish a relationship between g and $f^{\prime }$ , we express f and $f^{(t)}$ as Taylor series below:

$$ \begin{align*} f(z)=\sum_{j=0}^{\infty}a_jz^j \end{align*} $$

and

$$ \begin{align*} f^{(t)}(z)=\sum_{j=0}^{\infty}a_{j,t}z^j, \quad z\in\mathbb{D}, \end{align*} $$

where

$$ \begin{align*} a_{j,t}=a_{j+m+1}\frac{\Gamma(j+b+t)\Gamma(j+m+2)}{\Gamma(j+1)\Gamma(j+m+1+b)}, \quad j\in\mathbb{N}, m=[t-1]. \end{align*} $$

Obviously, $m\geq 0$ . Rewrite

$$ \begin{align*} g(z) =\sum_{j=0}^{\infty}\frac{\mathrm{B}(j+b+1,m)}{\mathrm{B}(j+1,m)}(j+m+1)a_{j+m+1}z^{j+m}, \end{align*} $$

where $\mathrm {B}(\cdot,\cdot)$ is the Beta function. Note that

$$ \begin{align*} f^{\prime}(z) =g(z)+\sum_{j=0}^{\infty}(j+m+1)a_{j+m+1}z^{j+m}+\sum_{j=1}^{m}j a_jz^{j-1}-g(z). \end{align*} $$

By setting

$$ \begin{align*} s_m(z)=\sum^{m}_{j=1}ja_jz^{j-1} \end{align*} $$

and

$$ \begin{align*} h(z)=\sum_{j=0}^{\infty}\bigg(1-\frac{\mathrm{B}(j+b+1,m)}{\mathrm{B}(j+1,m)}\bigg)a_{j+m+1}z^{j+m+1}, \end{align*} $$

we obtain

(4.1) $$ \begin{align} f^{\prime}(z)=g(z)+s_m(z)+h^{\prime}(z). \end{align} $$

Case 1: $m=0$ . A simple calculation gives that $f^{\prime }=g$ . Therefore, $|f^{\prime }(z)|^2(1-|z|^2)^{s}\mathrm {d}A(z)$ is a K-Carleson measure.

Case 2: $m>0$ . Note that $|g(z)|^2(1-|z|^2)^{s}\mathrm {d}A(z)$ is a K-Carleson measure and $s_m$ is a polynomial. It remains to deal with the function $h'$ in (4.1). It is enough to show that $h\in \mathcal {D}_{s-\sigma }$ by the following argument:

$$ \begin{align*} \frac{1}{K(|I|)}\int_{S(I)}|h^{\prime}(z)|^{2}(1-|z|^{2})^{s}\mathrm{d}A(z) \lesssim\frac{1}{|I|^\sigma}\int_{S(I)}|h^{\prime}(z)|^{2}(1-|z|^{2})^{s}\mathrm{d}A(z) \lesssim\|h\|^2_{\mathcal{D}_{s-\sigma}}. \end{align*} $$

Notice that

(4.2) $$ \begin{align} \|f\|^2_{\mathcal{D}_p}=\sum^{\infty}_{j=0}(1+j)^{1-p}|a_j|^2, \quad -1 < p < \infty, \end{align} $$

(see [Reference Stegenga21]) and a standard estimate

$$ \begin{align*} 0<1-\frac{\mathrm{B}(j+b+1,m)}{\mathrm{B}(j+1,m)}\leq\frac{(b+1)m}{j+m+1}, \quad j\in\mathbb{N}. \end{align*} $$

Accordingly,

$$ \begin{align*} \|h\|^2_{\mathcal{D}_{s-\sigma}} &\approx\sum_{j=0}^{\infty}\bigg(1-\frac{\mathrm{B}(j+b+1,m)}{\mathrm{B}(j+1,m)}\bigg)^2(j+m+1)^{1-s+\sigma}|a_{j+m+1}|^2\\ &\lesssim\sum_{j=0}^{\infty}\frac{|a_{j+m+1}|^2}{(j+m+1)^{1+s-\sigma}}. \end{align*} $$

In addition, by Theorem 2.1 for any q, $\sigma \leq q<\infty $ ,

$$ \begin{align*} \infty&>\underset{I\subseteq \mathbb{T}}{\mathrm{sup}}\frac{1}{K(|I|)}\int_{S(I)}|f^{(t)}(z)|^2(1-|z|^2)^{2t-2+s}\mathrm{d}A(z)\\ &\approx\underset{a\in \mathbb{D}}{\mathrm{sup}}\frac{1}{K(1-|a|^2)}\int_{\mathbb{D}}\bigg(\frac{1-|a|^{2}}{|1-\bar{a}z|}\bigg)^q|f^{(t)}(z)|^2(1-|z|^2)^{2t-2+s}\mathrm{d}A(z)\\ &\gtrsim\int_{\mathbb{D}}|f^{(t)}(z)|^2(1-|z|^2)^{2t-2+s}\mathrm{d}A(z)\\ &\approx\sum^{\infty}_{j=0}\frac{|a_{j+m+1}|^2}{(j+m+1)^{s-1}}. \end{align*} $$

Here, the latter part holds by using (4.2) and the Stirling’s formula:

$$ \begin{align*} \frac{\Gamma(n+c)}{n!}\approx n^{c-1}, \quad c>0. \end{align*} $$

Therefore,

$$ \begin{align*} \|h\|^2_{\mathcal{D}_{s-\sigma}}\lesssim\sum^{\infty}_{j=0}\frac{|a_{j+m+1}|^2}{(j+m+1)^{s-1}}<\infty, \end{align*} $$

which is the desired result.

Footnotes

This research is supported by the National Natural Science Foundation of China (Grant Number 11720101003)

References

Aleman, A., Carlsson, M., and Persson, A., Preduals of ${{\mathcal{Q}}}_p$ -spaces. II. Carleson imbeddings and atomic decompositions . Complex Var. Elliptic Equ. 52(2007), 629653.CrossRefGoogle Scholar
Arcozzi, N., Rochberg, R., and Sawyer, E., Carleson measures for analytic Besov spaces. Rev. Mat. Iberoam. 18(2002), 443510.CrossRefGoogle Scholar
Carleson, L., Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76(1962), 547559.CrossRefGoogle Scholar
Essén, M. and Wulan, H., On analytic and meromorphic functions and spaces of ${{\mathcal{Q}}}_K$ type . Uppsala Univ. Dept. Math. Rep. 32(2000), 1–26. Ill. J. Math. 46(2002), 12331258.Google Scholar
Essén, M., Wulan, H., and Xiao, J., Several function-theoretic characterizations of Möbius invariant ${{\mathcal{Q}}}_K$ spaces . J. Funct. Anal. 230(2006), 78115.CrossRefGoogle Scholar
Galanopoulos, P., Merchán, N., and Siskakis, A. G., A family of Dirichlet-Morrey spaces. Complex Var. Elliptic Equ. 64(2019), 16861702.CrossRefGoogle Scholar
Girela, D. and Peláez, J., Carleson measures for spaces of Dirichlet type. Integr. Equ. Oper. Theor. 55(2006), 415427.CrossRefGoogle Scholar
Kerman, R. and Sawyer, E., Carleson measures and multipliers of Dirichlet-type spaces. Trans. Amer. Math. Soc. 309(1988), 8798.CrossRefGoogle Scholar
Li, P., Liu, J., and Lou, Z., Integral operators on analytic Morrey spaces. Sci. China Math. 57(2014), 19611974.CrossRefGoogle Scholar
Liu, J. and Lou, Z., Properties of analytic Morrey spaces and applications. Math. Nachr. 288(2015), 16731693.CrossRefGoogle Scholar
Liu, J., Lou, Z., and Zhu, K., Embedding of Möbius invariant function spaces into tent spaces. J. Geom. Anal. 27(2017), 10131028.CrossRefGoogle Scholar
Morrey, B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43(1938), 126166.CrossRefGoogle Scholar
Oleinik, V., Embedding theorems for weighted classes of harmonic and analytic functions (in Russian). Zap. Nauch. Sem. LOMI Steklov 47(1974), 120137, translation in J. Soviet Math. 9(1978), 228–243.Google Scholar
Ortega, J. and Fàbrega, J., Pointwise multipliers and corona type decomposition in BMOA. Ann. Inst. Fourier (Grenoble) 46(1996), 111137.CrossRefGoogle Scholar
Pau, J. and Peláez, J. Á., Multipliers of Möbius invariant ${{\mathcal{Q}}}_s$ spaces . Math. Z. 261(2009), 545555.CrossRefGoogle Scholar
Pau, J. and Peláez, J. Á., Composition operators acting on weighted Dirichlet spaces. J. Math. Anal. Appl. 401(2013), 682694.CrossRefGoogle Scholar
Pau, J. and Zhao, R., Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces. Integr. Equ. Oper. Theory 78(2014), 483514.CrossRefGoogle Scholar
Peetre, J., On the theory of ${L}_{p,\lambda }$ spaces . J. Funct. Anal. 4(1964), 7187.CrossRefGoogle Scholar
Qian, R. and Li, S., Volterra type operators on Morrey type spaces. Math. Ineq. Appl. 18(2015), 15891599.Google Scholar
Rochberg, R. and Wu, Z., A new characterization of Dirichlet type spaces and applications. Ill. J. Math. 37(1993), 101122.Google Scholar
Stegenga, D., Multipliers of the Dirichlet space. Ill. J. Math. 24(1980), 113139.Google Scholar
Wu, Z., Carleson measures and multipliers for Dirichlet spaces. J. Funct. Anal. 169(1999), 148163.CrossRefGoogle Scholar
Wu, Z. and Xie, C., $Q$ spaces and Morrey spaces . J. Funct. Anal. 201(2003), 282297.CrossRefGoogle Scholar
Wulan, H. and Zhou, J., ${{\mathcal{Q}}}_K$ and Morrey type spaces . Ann. Acad. Sci. Fenn. Math. 38(2013), 193207.CrossRefGoogle Scholar
Wulan, H. and Zhu, K., Möbius invariant ${{\mathcal{Q}}}_K$ spaces. Springer, Cham, 2017.Google Scholar
Xiao, J., Holomorphic ${\mathcal{Q}}$ classes. Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001.Google Scholar
Xiao, J., Geometric ${{\mathcal{Q}}}_p$ functions. Frontiers in Mathematics, Birkhäuser, Verlag, Basel, 2006.Google Scholar
Xiao, J., The ${{\mathcal{Q}}}_p$ Carleson measure problem . Adv. Math. 217(2008), 20752088.CrossRefGoogle Scholar
Zhao, R., On logarithmic Carleson measures. Acta Sci. Math. (Szeged) 69(2003), 605618.Google Scholar
Zhu, K., Operator theory in function spaces. 2nd ed., Math. Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007.CrossRefGoogle Scholar
Zorko, C., Morrey space. Proc. Amer. Math. Soc. 98(1986), 586592.CrossRefGoogle Scholar