Article contents
On the continuity of Pickands constants
Published online by Cambridge University Press: 18 January 2022
Abstract
For a non-negative separable random field Z(t),
$t\in \mathbb{R}^d$
, satisfying some mild assumptions, we show that
$ H_Z^\delta =\lim_{{T} \to \infty} ({1}/{T^d}) \mathbb{E}\{{\sup_{ t\in [0,T]^d \cap \delta \mathbb{Z}^d } Z(t) }\} <\infty$
for
$\delta \ge 0$
, where
$0 \mathbb{Z}^d\,:\!=\,\mathbb{R}^d$
, and prove that
$H_Z^0$
can be approximated by
$H_Z^\delta$
if
$\delta$
tends to 0. These results extend the classical findings for Pickands constants
$H_{Z}^\delta$
, defined for
$Z(t)= \exp( \sqrt{ 2} B_\alpha (t)- \lvert {t} \rvert^{2\alpha })$
,
$t\in \mathbb{R}$
, with
$B_\alpha$
a standard fractional Brownian motion with Hurst parameter
$\alpha \in (0,1]$
. The continuity of
$H_{Z}^\delta$
at
$\delta=0$
is additionally shown for two particular extensions of Pickands constants.
Keywords
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220328010303824-0027:S0021900221000425:S0021900221000425_inline398.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220328010303824-0027:S0021900221000425:S0021900221000425_inline399.png?pub-status=live)
- 6
- Cited by