Hostname: page-component-7b9c58cd5d-hxdxx Total loading time: 0 Render date: 2025-03-14T02:09:05.927Z Has data issue: false hasContentIssue false

Nonlinear force-free configurations in cylindrical geometry

Published online by Cambridge University Press:  20 April 2020

Maxim Lyutikov*
Affiliation:
Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN47907-2036, USA
*
Email address for correspondence: lyutikov@purdue.edu
Rights & Permissions [Opens in a new window]

Abstract

We find a new family of solutions for force-free magnetic structures in cylindrical geometry. These solutions have radial power-law dependence and are periodic but non-harmonic in the azimuthal direction; they generalize the vacuum $z$-independent potential fields to current-carrying configurations.

Type
Research Article
Copyright
© Cambridge University Press 2020

1 Introduction

Force-free magnetic configurations satisfying the condition

(1.1)$$\begin{eqnarray}\displaystyle \boldsymbol{B}=\unicode[STIX]{x1D705}\boldsymbol{J}, & & \displaystyle\end{eqnarray}$$

where $\boldsymbol{B}$ is magnetic field and $\boldsymbol{J}$ is current density, are examples of magnetic structures that may represent the final stages of magnetic relaxation, or can be used as building blocks of plasma models (Lundquist Reference Lundquist1951; Woltier Reference Woltier1958; Taylor Reference Taylor1974; Priest & Forbes Reference Priest and Forbes2000).

Particular linear examples of force-free equilibria, with spatially constant $\unicode[STIX]{x1D705}$, were considered by Chandrasekhar & Kendall (Reference Chandrasekhar and Kendall1957). The most often-used configurations are Lundquist fields in cylindrical geometry (Lundquist Reference Lundquist1951) and spheromaks in spherical geometry (Bellan Reference Bellan2000).

Using the self-similar assumption, Lynden-Bell & Boily (Reference Lynden-Bell and Boily1994) (see also Aly Reference Aly1994) found nonlinear self-similar solutions in spherical geometry. Their model of axially symmetric twisted configurations has been widely used in astrophysical and space applications (e.g. Thompson, Lyutikov & Kulkarni Reference Thompson, Lyutikov and Kulkarni2002; Shibata & Magara Reference Shibata and Magara2011). In the spirit of Lynden-Bell & Boily (Reference Lynden-Bell and Boily1994), in this paper we construct similar nonlinear magnetic configurations in cylindrical geometry.

2 Self-similar configuration in cylindrical geometry

Shafranov (Reference Shafranov1966) and Grad (Reference Grad1967) formulated what is known as the Grad–Shafranov equation, separating a complicated magnetic configuration in the set of nested/foliated flux surfaces, given by the condition that the flux function $P$ is constant on the surface, and the encompassed current flow. Let us look for force-free equilibria that are independent of the coordinate $z$. The two Euler potentials $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D6FD}$ (or, equivalently, the related Clebsh variables) are

(2.1)$$\begin{eqnarray}\displaystyle \left.\begin{array}{@{}c@{}}\unicode[STIX]{x1D6FC}=z,\\ \unicode[STIX]{x1D6FD}=P(r,\unicode[STIX]{x1D719}),\end{array}\right\} & & \displaystyle\end{eqnarray}$$

while the magnetic field can be written as

(2.2)$$\begin{eqnarray}\displaystyle \boldsymbol{B}=\unicode[STIX]{x1D735}P\times \unicode[STIX]{x1D735}z+g(P)\unicode[STIX]{x1D735}z, & & \displaystyle\end{eqnarray}$$

where $g$ is some function.

Next we introduce a self-similar ansatz

(2.3)$$\begin{eqnarray}\displaystyle \left.\begin{array}{@{}c@{}}P(r,\unicode[STIX]{x1D719})=r^{-l}f(\unicode[STIX]{x1D719}),\\ g(P)={\mathcal{C}}|P|^{p},\\ \boldsymbol{B}=\unicode[STIX]{x1D735}P\times \unicode[STIX]{x1D735}z+{\mathcal{C}}|P|^{p}\unicode[STIX]{x1D735}z=\{f^{\prime },lf,{\mathcal{C}}|f|^{p}\}r^{-(l+1)}.\end{array}\right\} & & \displaystyle\end{eqnarray}$$

The absolute value of $|P|$ in the nonlinear term ensures that magnetic field is real ($f(\unicode[STIX]{x1D719})$ can become negative). Below, any appearance of $f$ to a non-integer power is to be understood to involve $\sqrt{f^{2}}=|f|$.

By dimensionality (equating radial powers in different terms in (1.1) with magnetic field given by (2.3)),

(2.4)$$\begin{eqnarray}\displaystyle p=1+1/l. & & \displaystyle\end{eqnarray}$$

The equation for $f$ becomes

(2.5)$$\begin{eqnarray}\displaystyle lf^{\prime \prime }+l^{3}f+{\mathcal{C}}^{2}(1+l)f^{(2+l)/l}=0 & & \displaystyle\end{eqnarray}$$

(note that the component $B_{z}$ enters here as $B_{z}^{2}$. This justifies the use of $|P|$).

For vacuum fields ${\mathcal{C}}=0$, the above relations reproduce

(2.6)$$\begin{eqnarray}\displaystyle \left.\begin{array}{@{}c@{}}P\propto r^{-m}\sin (m\unicode[STIX]{x1D719}),\\ B_{r}\propto r^{-(1+m)}f^{\prime },\\ B_{\unicode[STIX]{x1D719}}\propto mr^{-(1+m)}f,\end{array}\right\} & & \displaystyle\end{eqnarray}$$

with integer $m$.

The first integral is

(2.7)$$\begin{eqnarray}\displaystyle f^{\prime ,2}+l^{2}f^{2}+{\mathcal{C}}^{2}|f|^{2(1+l)/l}=H_{0}. & & \displaystyle\end{eqnarray}$$

By redefining $f\rightarrow \sqrt{H_{0}}f$ and ${\mathcal{C}}\rightarrow {\mathcal{C}}H_{0}^{-1/(2l)}$, the parameter $H_{0}$ can be set to unity,

(2.8)$$\begin{eqnarray}\displaystyle f^{\prime ,2}+l^{2}f^{2}+{\mathcal{C}}^{2}|f|^{2(1+l)/l}=1. & & \displaystyle\end{eqnarray}$$

Equation (2.8) is the main equation describing nonlinear force-free structures in cylindrical geometry. It depends on one parameter – the current strength ${\mathcal{C}}$. For a given ${\mathcal{C}}$, the value of $l$ is then determined as an eigenvalue problem by requiring periodicity in $\unicode[STIX]{x1D719}$, as we describe next.

We can solve for $f$ in quadratures:

(2.9)$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D719}=\int (\sqrt{1-l^{2}f-{\mathcal{C}}^{2}|f|^{2(1+l)/l}})^{-1}\,\text{d}f & & \displaystyle\end{eqnarray}$$

(so that the integration constant in (2.8) is just a phase $\unicode[STIX]{x1D719}$ where $f=0$).

Periodicity in $\unicode[STIX]{x1D719}$ requires

(2.10)$$\begin{eqnarray}\displaystyle \int _{0}^{f_{\max }}(\sqrt{1-l^{2}f-{\mathcal{C}}^{2}|f|^{2(1+l)/l}})^{-1}\,\text{d}f=\frac{\unicode[STIX]{x03C0}}{2\tilde{m}}, & & \displaystyle\end{eqnarray}$$

where $\tilde{m}=1,2\ldots$ is an integer azimuthal number (see a comment after (3.5) as to why odd solutions, $\propto 2\tilde{m}+1$, in the denominator, are discarded). The value of $f_{\max }$ satisfies

(2.11)$$\begin{eqnarray}\displaystyle 1-\tilde{m}^{2}f_{\max }-{\mathcal{C}}^{2}f_{\max }^{2(1+l)/l}=0. & & \displaystyle\end{eqnarray}$$

For given ${\mathcal{C}}$, the relations (2.10)–(2.11) constitute an eigenvalue problem on $l$. (For the vacuum no-current case ${\mathcal{C}}=0$, this reduces to $l=2\tilde{m}$, an integer – as it should.) In practice, we follow the following procedure: for each $\tilde{m}=1,2,\ldots$, we assume some $l$ and find ${\mathcal{C}}$ using the relations (2.10)–(2.11). Thus, for each $m$, there is a continuous relation ${\mathcal{C}}(l)$. (Physically, of course, it is the current ${\mathcal{C}}$ that determines the radial index $l$.)

Results are plotted in figures 2 and 3. In figure 2 we plot a particular solution for $l=1$ and $\tilde{m}=2$. The flux functions form a ‘petal’ pattern in azimuthal angle with the number of ‘petals’ equal to $2\tilde{m}$. There is a corresponding axial, unidirectional magnetic field $B_{z}$.

In figure 1 we plot the curves $l({\mathcal{C}})$ for various $2\tilde{m}=2,4,6,8,10$. Each curve starts at a point $\{{\mathcal{C}}=0,l=2\tilde{m}\}$. For non-zero current ${\mathcal{C}}>0$, the radial dependence becomes more shallow, $l<2\tilde{m}$.

Figure 1. Dependence of the radial index $l$ on the current parameter ${\mathcal{C}}$ for various harmonics $2\tilde{m}=2,4,6,8,10$.

In figure 3 we plot values of ${\mathcal{C}}$ as a function of azimuthal number $m$ for different values of $l=0.25,\ldots ,2$. Dashed lines are for convenience only; they connect points corresponding to the same radial parameter $l$.

Figure 2. (a) Example of solution $f(\unicode[STIX]{x1D719})$ for $l=1$, $2\tilde{m}=2$. In this case ${\mathcal{C}}=2.517$. (b) Structure of poloidal field. (Due to the assumed self-similar radial structure, the solutions do not extend to $r=0$.) Dashed line is the corresponding vacuum case, equation (2.6).

Figure 3. Values of ${\mathcal{C}}$ as a function of azimuthal number $m$ for different values of $l=0.25,\ldots ,2$ (in steps of 0.25). Top curves correspond to smaller $l$.

3 Analysis of the solutions

In a formulation of force-free fields in the form

(3.1)$$\begin{eqnarray}\displaystyle \text{curl}\,\boldsymbol{B}=\unicode[STIX]{x1D705}\boldsymbol{B}, & & \displaystyle\end{eqnarray}$$

the value of $\unicode[STIX]{x1D705}$ is

(3.2)$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D705}={\mathcal{C}}\frac{1+l}{lr}f^{1/l}. & & \displaystyle\end{eqnarray}$$

It is constant on flux surfaces $P$, (2.3).

The current density (we incorporate factors of $4\unicode[STIX]{x03C0}/c$ into the definition of magnetic field) is

(3.3)$$\begin{eqnarray}\displaystyle \left.\begin{array}{@{}c@{}}\displaystyle j_{r}={\mathcal{C}}\frac{1+l}{l}r^{-(l+2)}\unicode[STIX]{x2202}_{\unicode[STIX]{x1D719}}(|f|)^{(1+l)/l},\\ \displaystyle j_{\unicode[STIX]{x1D719}}={\mathcal{C}}(l+1)r^{-(l+2)}(|f|)^{(1+l)/l},\\ \displaystyle j_{z}=r^{-(l+2)}(f^{\prime \prime }+l^{2})=-{\mathcal{C}}^{2}\frac{1+l}{l}r^{-(l+2)}(|f|)^{(2+l)/l}.\end{array}\right\} & & \displaystyle\end{eqnarray}$$

The total axial current is

(3.4)$$\begin{eqnarray}\displaystyle I_{z}=\int _{r_{0}}^{\infty }r\,\text{d}r\int _{0}^{2\unicode[STIX]{x03C0}}\text{d}\unicode[STIX]{x1D719}j_{z}=-\frac{r_{0}^{-l}}{l}\int _{0}^{2\unicode[STIX]{x03C0}}\text{d}\unicode[STIX]{x1D719}(f^{\prime \prime }+l^{2}f), & & \displaystyle\end{eqnarray}$$

where $r_{0}$ is the inner boundary. The total axial current vanishes if the following two conditions are satisfied:

(3.5)$$\begin{eqnarray}\displaystyle \left.\begin{array}{@{}c@{}}\displaystyle \int _{0}^{2\unicode[STIX]{x03C0}}f\,\text{d}\unicode[STIX]{x1D719}=0,\\ \displaystyle f^{\prime }(2\unicode[STIX]{x03C0})=f^{\prime }(0).\end{array}\right\} & & \displaystyle\end{eqnarray}$$

All the solutions considered here satisfy these conditions: the second one requires even azimuthal numbers, $2\tilde{m}$. Generally, there is a larger family of self-similar force-free equilibria with non-zero total axial current.

There is a non-zero toroidal current

(3.6)$$\begin{eqnarray}\displaystyle \left.\begin{array}{@{}c@{}}\displaystyle j_{\unicode[STIX]{x1D719}}={\mathcal{C}}(l+1)r^{-2-l}|f|^{(1+l)/l},\\ \displaystyle \int _{0}^{2\unicode[STIX]{x03C0}}\text{d}\unicode[STIX]{x1D719}j_{\unicode[STIX]{x1D719}}\neq 0.\end{array}\right\} & & \displaystyle\end{eqnarray}$$

The radial current density integrated over $\unicode[STIX]{x1D719}$ satisfies

(3.7)$$\begin{eqnarray}\displaystyle j_{r}\propto \int _{0}^{2\unicode[STIX]{x03C0}}\text{d}\unicode[STIX]{x1D719}\unicode[STIX]{x2202}_{\unicode[STIX]{x1D719}}(|f|)^{(1+l)/l}=(|f|)^{(1+l)/l}|_{0}^{2\unicode[STIX]{x03C0}}=0. & & \displaystyle\end{eqnarray}$$

4 Discussion

In this paper we make analytical progress with the highly nonlinear problem(s) of magnetohydrodynamics (Lynden-Bell & Boily Reference Lynden-Bell and Boily1994). We find a class of nonlinear self-similar force-free equilibria in cylindrical geometry. The solutions we find all connect to the vacuum case, in which case the flux function is $P_{vac}\propto r^{-m}\sin (m\unicode[STIX]{x1D719})$. Structures with vanishing total axial current require even values of $m$ (hence $m\rightarrow 2\tilde{m}$). For non-zero distributed current with the current parameter ${\mathcal{C}}$ the radial dependence changes to $r^{-l}$, with $l<2\tilde{m}$, while remaining periodic in $\unicode[STIX]{x1D719}$ at $2\tilde{m}$. Solutions for a given $m$ resemble vacuum solutions $\propto \sin (2m\unicode[STIX]{x1D719})$, but they are not exactly harmonic in the nonlinear case.

For very large currents the solutions asymptote to $l\approx 0$, but never reach this limit. The case $l=0$ corresponds to $B_{r}\propto 1/r$. Mathematically, this is the analogue of the split monopole case in spherical geometry – the split monopole case can be achieved in spherical geometry (with a corresponding anti-monopole in the opposite hemisphere), but is not possible in cylindrical geometry.

Acknowledgements

This work has been supported by NASA grant 80NSSC17K0757 and NSF grants 10001562 and 10001521. I would like to thank J.-J. Aly for comments.

References

Aly, J. J. 1994 Asymptotic formation of a current sheet in an indefinitely sheared force-free field: an analytical example. Astron. Astrophys. 288, 10121020.Google Scholar
Bellan, P. M. 2000 Spheromaks: A Practical Application of Magnetohydrodynamic Dynamos and Plasma Self-Organization. World Scientific.CrossRefGoogle Scholar
Chandrasekhar, S. & Kendall, P. C. 1957 On force-free magnetic fields. Astrophys. J. 126, 457-+.CrossRefGoogle Scholar
Grad, H. 1967 Toroidal containment of a plasma. Phys. Fluids 10 (1), 137154.CrossRefGoogle Scholar
Lundquist, S. 1951 On the stability of magneto-hydrostatic fields. Phys. Rev. 83, 307311.CrossRefGoogle Scholar
Lynden-Bell, D. & Boily, C. 1994 Self-similar solutions up to flashpoint in highly wound magnetostatics. Mon. Not. R. Astron. Soc. 267, 146.CrossRefGoogle Scholar
Priest, E. & Forbes, T. 2000 Magnetic Reconnection. Cambridge University Press.CrossRefGoogle Scholar
Shafranov, V. D. 1966 Plasma equilibrium in a magnetic field. Rev. Plasma Phys. 2, 103-+.Google Scholar
Shibata, K. & Magara, T. 2011 Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8 (1), 6.CrossRefGoogle Scholar
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.CrossRefGoogle Scholar
Thompson, C., Lyutikov, M. & Kulkarni, S. R. 2002 Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars. Astrophys. J. 574 (1), 332355.CrossRefGoogle Scholar
Woltier, L.1958 Proc. Natl Acad. Sci. USA 44, 489.Google Scholar
Figure 0

Figure 1. Dependence of the radial index $l$ on the current parameter ${\mathcal{C}}$ for various harmonics $2\tilde{m}=2,4,6,8,10$.

Figure 1

Figure 2. (a) Example of solution $f(\unicode[STIX]{x1D719})$ for $l=1$, $2\tilde{m}=2$. In this case ${\mathcal{C}}=2.517$. (b) Structure of poloidal field. (Due to the assumed self-similar radial structure, the solutions do not extend to $r=0$.) Dashed line is the corresponding vacuum case, equation (2.6).

Figure 2

Figure 3. Values of ${\mathcal{C}}$ as a function of azimuthal number $m$ for different values of $l=0.25,\ldots ,2$ (in steps of 0.25). Top curves correspond to smaller $l$.