Hostname: page-component-6bf8c574d5-9f2xs Total loading time: 0 Render date: 2025-03-12T01:59:13.412Z Has data issue: false hasContentIssue false

Construction of unital quantales

Published online by Cambridge University Press:  30 January 2025

Shengwei Han*
Affiliation:
Department of Mathematics, Shaanxi Normal University, Xi’an, 710119, China lvjiaxin@snnu.edu.cn
Jiaxin Lv
Affiliation:
Department of Mathematics, Shaanxi Normal University, Xi’an, 710119, China lvjiaxin@snnu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Unital quantales constitute a significant subclass within quantale theory, which play a crucial role in the theoretical framework of quantale research. The main purpose of this article is to investigate the construction of unital quantales from a given quantale. Using Q-algebras, we prove that every quantale is embedded into a unital quantale, which generalizes the work of Paseka and Kruml for the construction of unital quantales. Based on which, we further show that every quantale can be transformed into a unitally non-distributive quantale, which expands the foundational work of Guriérrez García and Höhle for unitally non-distributive quantales. Finally, we provide a variety of methods for constructing unital quantales from some special quantales.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

1 Introduction

Quantales were introduced to develop a framework for non-commutative spaces and quantum mechanics (see [Reference Mulvey16]). The literature on quantales often emphasizes that these structures are required to have units. Quantales characterized by unit, as a valued domain, have wide applications in theoretical computer science, logic, quantitative domain, enriched category, many-valued topological space and fuzzy algebra (see [Reference Abramsky and Vickers1, Reference Fan6, Reference Han and Zhao13, Reference Hofmann and Waszkiewicz14, Reference Resende21, Reference Russo25, Reference Yetter30, Reference Zhang31]). In [Reference Paseka and Kruml19], Paseka and Kruml investigated the construction of unital quantales from a given quantale, and they proved that every quantale Q can be extended to a unital quantale $Q[e]$ . Based on such a result, Paseka and Kruml further showed that every quantale is embedded into a simple quantale (see [Reference Paseka and Kruml19]). Girard quantales introduced by Yetter are an important class of quantales, which provide an algebraic semantics for linear logic (see [Reference Yetter30]). By unital quantales $Q[e]$ , one can see that every quantale can also be embedded into a Girard quantale (see [Reference Han and Zhao11, Reference Rosenthal22]). Moreover, Han and Zhao used unital quantales $Q[e]$ to prove that the category of unital quantales is a reflective subcategory of the category of quantales (see [Reference Han and Zhao12]), and then Pan and Han used unital quantale $Q[e]$ to give the concrete form of free Q-algebras over sets (see [Reference Pan and Han17]). Besides the method provided by Paseka and Kruml, are there any other methods to construct unital quantales from a given quantale? This question is the main motivation of this article.

In order to investigate the question posed by Hofmann and Clementino during the XIV Portuguese Category Seminar celebrated at Coimbra, Portugal in October 2023 (see [Reference Clementino, Hofmmann and Tholen3]), Guriérrez García and Höhle presented a new class of quantales, called unitally non-distributive quantales. In [Reference Gutiérrez García and Höhle8], Guriérrez García and Höhle showed that under mild conditions, quantales on non-distributive lattices can be extended to unitally non-distributive quantales by addition of an isolated unit. Here, we have a natural question to ask whether every quantale can be extended to a unitally non-distributive quantale. In order to answer this question, we also need to consider a new method of constructing unital quantales. Therefore, investigating the construction of unital quantales will be the main task of the present article. Let 0 and 1 respectively denote the bottom element and the top element in a complete lattice. In the following, we shall review some basic concepts and results needed in this article.

Definition 1.1 (Rosenthal [Reference Rosenthal22])

A $quantale$ is a complete lattice Q with a semigroup multiplication $\&$ that distributes over arbitrary joins, that is,

$$ \begin{align*}a\&(\bigvee_{i\in I}b_i)=\bigvee_{i\in I}(a\& b_i)\ \ \mbox{and}\ \ (\bigvee_{i\in I} b_i)\& a=\bigvee_{i\in I}(b_i\& a) \end{align*} $$

for all $a\in Q, \{b_i\}_{i\in I}\subseteq Q$ .

In fact, quantales can be seen as non-commutative complete residuated lattices. The study of such partially ordered algebraic structures goes back to a series of papers by Ward and Dilworth in the 1930s (see [Reference Dilworth4, Reference Ward28, Reference Ward and Dilworth29]). By the completeness of quantale Q, the semigroup multiplication $\&$ gives rise to a pair of binary operations $\rightsquigarrow $ and $\rightarrow $ satisfying

(1.1) $$ \begin{align}a\leq b\rightarrow c \Longleftrightarrow a\& b\leq c \Longleftrightarrow b\leq a\rightsquigarrow c \end{align} $$

for all $a,b,c\in Q$ . Note that every complete lattice Q can give rise to a quantale $(Q, \&_a)$ where $a\in Q$ and $\&_a$ is a semigroup multiplication determined by

(1.2) $$ \begin{align}\forall x, y\in Q,\ x\&_a y=\begin{cases} 0, & \ \mbox{if}\ \ x=0\ \mbox{or}\ y=0,\\ a, & \ \mbox{otherwise.}\ \ \end{cases}\end{align} $$

A quantale Q is said to be unital provided that there exists an element $e\in Q$ such that $q\&e = q = e\&q$ for all $q\in Q$ . Q is said to be commutative provided that $a\&b=b\&a$ for all $a,b\in Q$ . An element x of Q is called two-sided (non-zero) provided that $x\&1\leq x$ and $1\&x\leq x (x\neq 0)$ . Q is called two-sided if every element of Q is two-sided. A non-zero element x of Q is called a zero-factor provided that there exists a non-zero element y of Q such that $x\& y=0$ or $y\&x=0$ . A subset S of Q is called a subquantale if S is closed under joins and $\&$ .

The following construction corresponds to the extension of a non-unital $C^\ast $ -algebra to a unital $C^\ast $ -algebra (see [Reference Pedersen20]).

Theorem 1.2 (Paseka and Kruml [Reference Kruml and Paseka15, Reference Paseka and Kruml19])

Let Q be a quantale, $Q[e]=\{a\vee k\ \colon a\in Q, k\in \{0, e\}\}$ , where e is an arbitrary element such that $e\not \in Q$ . We define the supremum on $Q[e]$ with $0\vee e=e$ ,

$$ \begin{align*}\bigvee\limits^{Q[e]}_{i\in I}(a_i\vee k_i)=\begin{cases} (\bigvee\limits^{Q}_{i\in I}a_i)\vee e, & \ \mbox{if}\ \ \exists i\in I, k_i=e,\\ \bigvee\limits^{Q}_{i\in I}a_i, & \ \mbox{otherwise}\ \ \end{cases}\end{align*} $$

and the semigroup multiplication $\&^\prime $ on $Q[e]$ as follows

$$ \begin{align*}(a\vee k^\prime)\&^\prime(b\vee k^{\prime\prime}) =\begin{cases} a\&b, & \mbox{if}\ \ k^\prime=0, k^{\prime\prime}=0,\\ (a\&b)\vee a, & \mbox{if}\ \ k^\prime=0, k^{\prime\prime}\neq 0,\\ (a\&b)\vee b, & \mbox{if}\ \ k^\prime\neq 0, k^{\prime\prime}= 0,\\ ((a\&b)\vee a\vee b)\vee e, & \mbox{if}\ \ k^{\prime}\neq 0, k^{\prime\prime}\neq 0. \end{cases} \end{align*} $$

Then $(Q[e], \&^\prime )$ is a unital quantale with unit e, and the inclusion map $i\colon Q\rightarrow Q[e]$ is an embedding of quantales in which $i(a)=a\vee 0$ .

Note that each element $a\in Q$ is identified with the formal join $a\vee 0$ . The research on unital quantales $Q[e]$ can be found in [Reference Han and Zhao12, Reference Kruml and Paseka15, Reference Paseka and Kruml19].

Definition 1.3 (Abramsky and Vickers [Reference Abramsky and Vickers1], Paseka [Reference Paseka18])

Let Q be a commutative quantale. A right module over Q (a right Q-module for short) is a pair $(M, \cdot )$ , where M is a complete lattice and $\cdot \colon M\times Q\rightarrow M$ is a map (called a module operator) such that

  1. (1) $(\bigvee S)\cdot q = \bigvee \limits _{s\in S}s\cdot q$ for all $q\in Q, S\subseteq M$ ;

  2. (2) $m\cdot (\bigvee T) = \bigvee \limits _{t\in T}m\cdot t$ for all $m\in M, T\subseteq Q$ ;

  3. (3) $m\cdot (p\&q) = (m\cdot p)\cdot q$ for all $p,q\in Q, m\in M$ .

For the sake of shortness, from now on “Q-module” means “right Q-module”. If Q is a unital quantale with unit e, then a Q-module $(M, \cdot )$ is called unital provided that $m\cdot e= m$ for all $m\in M$ .

Definition 1.4 (Solovyov [Reference Solovyov26], Wang and Zhao [Reference Wang and Zhao27])

Let Q be a commutative (unital) quantale. A (unital) Q-algebra is a triple $(M, \cdot , \otimes )$ such that

  1. (1) $(M, \cdot )$ is a (unital) Q-module;

  2. (2) $(M, \otimes )$ is a quantale;

  3. (3) $(a\otimes b)\cdot q = (a\cdot q)\otimes b = a\otimes (b\cdot q)$ for all $q\in Q, a,b\in M$ .

Note that every complete lattice M can give rise to a Q-module $(M, \cdot )$ with trivial module operator $\cdot $ , that is, $m\cdot q=0$ for all $m\in M, q\in Q$ . Thus, every quantale $(M, \otimes )$ can give rise to a Q-algebra $(M, \cdot , \otimes )$ .

For the notions and concepts, which are not explained, please refer to [Reference Adámek, Herrlich and Strecker2, Reference Eklund, Gutiérrez García, Höhle and Kortelainen5, Reference Gierz, Hofmann, Keimel, Lawson, Mislove and Scott7].

2 Constructing unital quantales from given quantales

As mentioned in the introduction, unital quantales play an important role in the study of quantales. To investigate the different constructions of unital quantales should be an interesting and meaningful work.

Let $(M, \otimes )$ and $(N, \otimes )$ be quantales, $M\times N$ denote the Cartesian product of M and N. Then $(M\times N, \otimes )$ is a quantale, where $(m, n)\otimes (m^\prime , n^\prime )=(m\otimes m^\prime , n\otimes n^\prime )$ . It is easy to verify that $(M\times N, \otimes )$ is a unital quantale if and only if both M and N are unital quantales. Thus, we can not use this method to construct unital quantales from non-unital quantales. In this section, we shall provide some new methods of constructing unital quantales.

2.1 Constructing unital quantales by Q-algebras

Let Q be a commutative (unital) quantale and $(M, \cdot , \otimes )$ be a (unital) Q-algebra. We define a semigroup multiplication $\&_\cdot $ on $M\times Q$ and a map $\star \colon (M\times Q)\times Q\rightarrow M\times Q$ as follows

(2.1) $$ \begin{align}(m, q)\&_\cdot(n, p)=((m\otimes n)\vee(m\cdot p)\vee(n\cdot q), q\&p)\end{align} $$

and

$$ \begin{align*}(m, q)\star p=(m\cdot p, q\&p).\end{align*} $$

Note that if $(M, \cdot , \otimes )$ be a Q-algebra with trivial module operator, then $(M\times Q, \otimes )=(M\times Q, \&_\cdot )$ .

Lemma 2.1 (Han and Zhao [Reference Han and Zhao13])

Let Q be a commutative $($ unital $)$ quantale and $(M, \cdot , \otimes )$ be a $($ unital $) Q$ -algebra. Then

  1. (1) $(M\times Q, \star , \&_\cdot )$ is a $($ unital $) Q$ -algebra.

  2. (2) the inclusion map $M\hookrightarrow M\times Q$ , assigning m to $(m, 0)$ , is an embedding of Q-algebras.

Corollary 2.2 Let Q be a commutative (unital) quantale and $(M, \cdot , \otimes )$ be a (unital) Q-algebra. Then $(M\times Q, \&_\cdot )$ is a (unital) quantale and the inclusion map $M\hookrightarrow M\times Q$ is an embedding of quantales.

Lemma 2.3 Let Q be a commutative quantale without zero-factors. Then every complete lattice M can give rise to a Q-module $(M, \ast )$ with unital module operator $\ast $ , that is,

$$ \begin{align*}\forall m\in M, q\in Q,\ \ m\ast q=\begin{cases} 0, & \ \mbox{if}\ \ q=0,\\ m, & \ \mbox{otherwise.}\ \ \end{cases}\end{align*} $$

Thus, every quantale $(M, \otimes )$ can give rise to a Q-algebra $(M, \ast , \otimes )$ .

Proof Proof is straightforward.

Theorem 2.4 Let K be a commutative unital quantale without zero-factors and $(M, \otimes )$ be a quantale. Then $(M\times K, \&_\ast )$ is a unital quantale.

Proof By Lemma 2.3, we have that $(M, \ast , \otimes )$ is a unital K-algebra with unital module operator. It follows from Corollary 2.2 that $(M\times K, \&_\ast )$ is a unital quantale. Clearly, we see that $\forall (m, k), (n, k^\prime )\in M\times K$ ,

$$ \begin{align*}(m, k)\&_\ast(n, k^\prime)=((m\otimes n)\vee(m\ast k^\prime)\vee(n\ast k), k\&k^\prime) \end{align*} $$

and $(0, e)$ is the unit of $(M\times K, \&_\ast )$ , where e is the unit of K.

Figure 1 The partial order on $\mathbf {K_6}$ .

Figure 2 The partial order on $\mathbf {K_8}$ .

Let L be a complete lattice and let $\triangleleft $ be the totally below relation on L, i.e., given $\alpha , \beta \in L$ , we write $\beta \triangleleft \alpha $ if for any subset $A\subseteq L$ with $\alpha \leq \bigvee A$ there is an element $\gamma \in A$ such that $\beta \leq \gamma $ . An element $\alpha $ of L is called $\triangleleft $ -approximable if $\alpha =\bigvee \{\beta \in L\ \colon \beta \triangleleft \alpha \}$ . A lattice L is called strictly non-distributive if there exist $\alpha , \beta , x\in L$ such that $x\wedge (\alpha \vee \beta )\not \leq (x\wedge \alpha )\vee (x\wedge \beta )$ and $x\not \leq \alpha \vee \beta $ (see [Reference Gutiérrez García and Höhle8]). Let $L, M$ be complete lattices such that L or M is strictly non-distributive. Then $L\times M$ is also strictly non-distributive.

Example 2.5

  1. (1) Let $\mathbf {3}=\{0, e, 1\}$ denote the three-element quantale with a semigroup multiplication $\&$ determined by the table below.

    Then $\mathbf {3}$ is a commutative unital quantale without zero-factors.

  2. (2) Let $\mathbf {2}$ denote the two-element unital quantale. Then $\mathbf {2}$ has no zero-factors.

  3. (3) Let $\mathbf {K_6}=\{0, a, b, c, e, 1\}$ be a complete lattice determined by Figure 1 and $\&$ be a semigroup multiplication on $\mathbf {K_6}$ determined by the table below.

    It is easy to check that $\mathbf {K_6}$ is a commutative unital quantale without zero-factors, and the underlying lattice of $\mathbf {K_6}$ is non-distributive, but not strictly non-distributive. Further, one can see that the unit e is $\triangleleft $ -approximable.

  4. (4) Let $\mathbf {K_8}=\{0, a, b, c, d, e, f, 1\}$ be a complete lattice determined by Figure 2 and $\&$ be a semigroup multiplication on $\mathbf {K_8}$ determined by the table below.

    It is easy to check that $\mathbf {K_8}$ is a commutative unital quantale without zero-factors, and the underlying lattice of $\mathbf {K_8}$ is strictly non-distributive such that the unit f is $\triangleleft $ -approximable.

The results in Corollary 2.6 generalize the work of Paseka and Kruml for unital quantales in [Reference Paseka and Kruml19].

Corollary 2.6

  1. (1) Every quantale is embedded into a unital quantale.

  2. (2) Let $(M, \otimes )$ be a quantale. Then $(M\times \mathbf {2}, \&_\ast )$ is isomorphic to the unital quantale $(M[e], \&^\prime )$ .

Proof The proof follows from Corollary 2.2, Theorem 2.4, and Example 2.5.

In [Reference Gutiérrez García and Höhle8], Guriérrez García and Höhle showed that under mild conditions, quantales on non-distributive lattices can be extended to unitally non-distributive quantales by addition of an isolated unit. The following theorem indicates that every quantale can be extended to a unitally non-distributive quantale. First, we recall the concept of unitally non-distributive quantales.

A unital quantale Q is called unitally non-distributive if it satisfies the following properties:

  1. (1) the unit e is $\triangleleft $ -approximable.

  2. (2) the unit e is non-distributive, that is, there exists a subset A of Q such that $e\wedge (\bigvee A)\not \leq \bigvee _{a\in A}(e\wedge a)$ .

Note that $\mathbf {K_8}$ is a unitally non-distributive quantale and the unit f is strictly non-distributive, that is, there exist $\alpha , \beta \in Q$ such that $f\wedge (\alpha \vee \beta )\not \leq (f\wedge \alpha )\vee (f\wedge \beta )$ and $f\not \leq \alpha \vee \beta $ . In $\mathbf {K_6}$ , the unit e is $\triangleleft $ -approximable, but it is not non-distributive.

Theorem 2.7 Every quantale can be embedded into a unitally non-distributive quantale.

Proof Let $(M, \otimes )$ be a quantale. Then by Theorem 2.4 and Example 2.5, we have that $(M\times \mathbf {K_8}, \&_\ast )$ is a unital quantale such that the unit $(0, f)$ of $(M\times \mathbf {K_8}, \&_\ast )$ is $\triangleleft $ -approximable and the unit $(0, f)$ is non-distributive. Thus, $(M\times \mathbf {K_8}, \&_\ast )$ is unitally non-distributive. It follows from Corollary 2.2 that the inclusion map $M\hookrightarrow M\times \mathbf {K_8}$ is an embedding of quantales.

Proposition 2.8 Let Q be a commutative quantale and K be a commutative unital quantale without zero-factors. If $(M, \cdot , \otimes )$ is a Q-algebra, then $(M, \odot , \otimes )$ is a unital $(Q\times K)$ -algebra.

Proof By Theorem 2.4, we have that $(Q\times K, \&_\ast )$ is a commutative unital quantale. Let $(M, \cdot , \otimes )$ be a Q-algebra. Then it follows from Lemma 2.3 that $(M, \ast , \otimes )$ is a unital K-algebra with unital module operator. We define a map $\odot \colon M\times (Q\times K)\rightarrow M$ as follows

$$ \begin{align*}\forall m\in M,\ (q, k)\in Q\times K,\ m\odot(q, k):=(m\cdot q)\vee (m\ast k).\end{align*} $$

Let $m, n, m_i\in M,\ (q, k), (p, k^\prime ), (q_i, k_i)\in Q\times K$ . Then by Lemma 2.3, we have

$$ \begin{align*}\begin{array}{l@{\;}l@{\;}l}(\bigvee_i m_i)\odot (q, k)&=& ((\bigvee_i m_i)\cdot q)\vee((\bigvee_i m_i)\ast k)\\ &=& (\bigvee_i m_i\cdot q)\vee(\bigvee_i m_i\ast k)\\ &=& \bigvee_i (m_i\cdot q)\vee(m_i\ast k)\\ &=& \bigvee_i m_i\odot (q, k), \end{array}\end{align*} $$
$$ \begin{align*}\begin{array}{l@{\;}l@{\;}l}m\odot (\bigvee_i(q_i, k_i))&=& m\odot (\bigvee_i q_i, \bigvee_i k_i)\\ &=& (m\cdot (\bigvee_i q_i))\vee(m\ast(\bigvee_i k_i))\\ &=& (\bigvee_i (m\cdot q_i)\vee(m\ast k_i))\\ &=& \bigvee_i m\odot( q_i, k_i), \end{array}\end{align*} $$
$$ \begin{align*}\begin{array}{l@{\;}l@{\;}l}(m\otimes n)\odot(q, k)&=& ((m\otimes n)\cdot q)\vee((m\otimes n)\ast k)\\ &=& (m\otimes(n\cdot q))\vee (m\otimes(n\ast k))\\ &=& m\otimes((n\cdot q)\vee(n\ast k))\\ &=& m\otimes(n\odot(q, k))\\ &=& (m\otimes(n\cdot q))\vee (m\otimes(n\ast k))\\ &=& ((m\cdot q)\otimes n)\vee((m\ast k)\otimes n)\\ &=& (m\odot(q, k))\otimes n, \end{array}\end{align*} $$
$$ \begin{align*}\!\!\!\!\begin{array}{l@{\;}l@{\;}l}m\odot((q, k)\&_\ast (p, k^\prime)&=& m\odot((q\& p)\vee(p\ast k)\vee(q\ast k^\prime), k\&k^\prime)\\ &=& (m\cdot((q\& p)\vee(p\ast k)\vee(q\ast k^\prime)))\vee(m\ast(k\&k^\prime))\\ &=& (m\cdot(q\& p))\vee(m\cdot(p\ast k))\vee(m\cdot(q\ast k^\prime))\vee (m\ast(k\&k^\prime))\\ &=& ((m\cdot q)\cdot p)\vee((m\ast k)\cdot p)\vee((m\cdot q)\ast k^\prime)\vee((m\ast k)\ast k^\prime)\\ &=& (((m\cdot q)\vee(m\ast k))\cdot p)\vee(((m\cdot q)\vee(m\ast k))\ast k^\prime)\\ &=& ((m\cdot q)\vee(m\ast k))\odot(p, k^\prime)\\ &=& (m\odot(q, k))\odot(p, k^\prime), \end{array}\end{align*} $$

and $m\odot (0, e)=m$ where e is the unit of K.

By the above description, we have that $(M, \odot , \otimes )$ is a unital $(Q\times K)$ -algebra.

Corollary 2.9 (Pan and Han [Reference Pan and Han17])

Let Q be a commutative quantale and $(M, \cdot , \otimes )$ be a Q-algebra. Then $(M, \odot , \otimes )$ is a unital $Q[e]$ -algebra.

Proof Taking $K=\mathbf {2}$ , by Corollary 2.6 and Proposition 2.8 we have that $(M, \odot , \otimes )$ is a unital $Q[e]$ -algebra.

Let Q be a commutative quantale and K be a commutative unital quantale without zero-factors. Then for a given Q-algebra $(M, \cdot , \otimes )$ , using the following methods we obtain two unital quantales $((M\times Q)\times K, \&_\ast )$ and $(M\times (Q\times K), \&_\odot )$ .

Proposition 2.10 Let Q be a commutative quantale and K be a commutative unital quantale without zero-factors. If $(M, \cdot , \otimes )$ is a Q-algebra, then $((M\times Q)\times K, \&_\ast )\cong (M\times (Q\times K), \&_\odot )$ .

Proof We define a map $f\colon (M\times Q)\times K\rightarrow M\times (Q\times K)$ as follows

$$ \begin{align*}\forall ((m, q), k)\in (M\times Q)\times K,\ \ f((m, q), k)=(m, (q, k)).\end{align*} $$

It is easy to show that f is an isomorphism of quantales, that is, $((M\times Q)\times K, \&_\ast )\cong (M\times (Q\times K), \&_\odot )$ .

2.2 Constructing unital quantales by upper sets

In order to provide a unified semantics for a wide class of substructural logics, Rump and Yang introduced the concept of quantum B-algebras (see [Reference Rump23, Reference Rump and Yang24]). Quantum B-algebras can be regarded as implicational subreducts of quantales. A quantum B-algebra is a poset X with two binary operations $\rightarrow $ and $\rightsquigarrow $ satisfying the following three conditions

$$ \begin{align*}y\leq z\Longrightarrow x\rightarrow y\leq x\rightarrow z\end{align*} $$
$$ \begin{align*}x\leq y\rightarrow z\Longleftrightarrow y\leq x\rightsquigarrow z\end{align*} $$
$$ \begin{align*}x\rightsquigarrow(y\rightarrow z) = y\rightarrow (x\rightsquigarrow z)\end{align*} $$

for all $x,y,z\in X$ . A quantum B-algebra X is called unital if there exists an element $u\in X$ such that $u\rightarrow x =x= u \rightsquigarrow x$ for all $x \in X$ .

Note that by (1.1) we see that a quantale is a quantum B-algebra. Rump and Yang used upper sets to build a relation between quantum B-algebras and quantales. Let X be a quantum B-algebra, $U(X)$ denote the set of all upper sets of X. Then $U(X)$ is a complete lattice with respect to set-theoretic union. For $A,B\in U(X)$ , we define a semigroup multiplication $\odot $ on $U(X)$ as follows

(2.2) $$ \begin{align}A\odot B:=\{x\in X : \exists b\in B, b\rightarrow x\in A\}.\end{align} $$

Note that $A\odot B =\{x\in X : \exists a\in A, a\rightsquigarrow x\in B\}=\{x\in X : \exists a\in A, b\in B, s.t.\ a\leq b\rightarrow x\}= \{x\in X : \exists a\in A, b\in B, s.t.\ b\leq a\rightsquigarrow x\}$ .

Proposition 2.11 (Rump and Yang [Reference Rump and Yang24])

Let $(X, \rightarrow , \rightsquigarrow , \leq )$ be a quantum B-algebra. Then $(U(X), \odot )$ is a quantale, called an upper-set quantale.

By upper-set quantales, Rump and Yang proved that the category of quantum B-algebras and the category of logical quantales are dually equivalent (see [Reference Rump and Yang24]). In [Reference Han, Xu and Qin10], Han, Xu, and Qin gave a sufficient and necessary condition for the upper-set quantale $U(X)$ to be a unital quantale. A subset E of a quantum B-algebra X is called positive provided that E is an upper set of X, and $x\rightsquigarrow y\in E\Longleftrightarrow x\leq y \Longleftrightarrow x\rightarrow y\in E$ for all $x,y\in X$ . Note that if a quantum B-algebra has a positive subset, then it is unique (see [Reference Han and Bao9, Proposition 3.6]). A quantum B-algebra is called positive if it has a positive subset. Clearly, a unital quantum B-algebra is positive, but a positive quantum B-algebra is in general not unital (see [Reference Han, Xu and Qin10]).

Proposition 2.12 (Han et al. [Reference Han, Xu and Qin10])

Let $(X, \rightarrow , \rightsquigarrow , \leq )$ be a quantum B-algebra. Then $(U(X), \odot )$ is a unital quantale if and only if X is positive.

Corollary 2.13 If a quantale Q as a quantum B-algebra is positive, then $(U(Q), \odot )$ is a unital quantale.

Remark 2.14

  1. (1) If a quantale $(Q, \&)$ is considered as a posemigroup, then $A\odot B=\{ x\in Q\ \colon \exists a\in A, b\in B,\ a\& b\leq x\}$ for $A, B\in U(Q)$ .

  2. (2) A quantale Q is unital if and only if Q as a quantum B-algebra is unital.

  3. (3) One may ask such a question whenever a quantale as quantum B-algebra is positive, it must be unital? In Example 2.15, we shall give a negative answer.

Example 2.15 Let $Q=\{0, a, b, 1\}$ be a complete lattice determined by Figure 3 and $\&$ be a semigroup multiplication on Q determined by the table below.

Figure 3 The partial order on Q.

It is easy to verify that $(Q, \&)$ is a non-unital quantale, and $\{a, b, 1\}$ is a positive subset of Q. Thus, by Corollary 2.13 we have that $(U(Q), \odot )$ is a unital quantale.

When quantales are considered as quantum B-algebras, we can use upper sets to construct upper-set quantales. Further, if quantales are positive, then the corresponding upper-set quantales are unital. When quantales are considered as partially ordered semigroups (posemigroups for short), we can use lower sets to construct lower-set quantales (see [Reference Han and Zhao13, Reference Kruml and Paseka15]). A natural question is under what condition the lower-set quantale $L(Q)$ of a quantale Q is unital.

Let $(S, \cdot , \leq )$ be a posemigroup, $L(S)$ denote the set of all lower sets of S. Then $L(S)$ is a complete lattice with respect to set-theoretic union. We now define a semigroup multiplication $\otimes $ on $L(S)$ as follows

(2.3) $$ \begin{align}A\otimes B =\{ x\in S\ \colon \exists a\in A, b\in B,\ x\leq a\cdot b\}.\end{align} $$

Proposition 2.16 (Krum and Paseka [Reference Kruml and Paseka15])

Let $(S, \cdot , \leq )$ be a posemigroup. Then $(L(S), \otimes )$ is a quantale, called a lower-set quantale.

A subset K of a posemigroup $(S, \cdot , \leq )$ is called normal provided that K satisfies the following three conditions:

  1. (1) K is a lower set of S.

  2. (2) $k\cdot q\leq q$ and $q\cdot k\leq q$ for all $q\in S, k\in K$ .

  3. (3) For any $q\in S$ , there exist $k, k^\prime \in K$ such that $q=k\cdot q$ and $q=q\cdot k^\prime $ .

Note that if a posemigroup has a normal subset, then it is unique. To see this, we let K and $K^\prime $ be two normal subsets. Then for $k\in K$ there exists $k^\prime \in K^\prime $ such that $k=k^\prime \cdot k\leq k^\prime \in K^\prime $ , which implies that $k\in K^\prime $ , that is, $K\subseteq K^\prime $ . Similarly, we have $K^\prime \subseteq K$ . Thus, $K=K^\prime $ . A posemigroup is called normal if it has a normal subset. A unital posemigroup is normal, but the converse is in general not true (see Example 2.18).

Proposition 2.17 Let $(S, \cdot , \leq )$ be a posemigroup. Then $(L(S), \otimes )$ is a unital quantale if and only if S is normal.

Proof Let K be the unit of quantale $(L(S), \otimes )$ . Then $(\downarrow \!q)\otimes K = \downarrow \!q = K\otimes (\downarrow \!q)$ for all $q\in S$ . By (2.3), we see that K is a normal subset of S, that is, S is normal.

Conversely, let K be the normal subset of S. Then it is easy to check that K is the unit of quantale $(L(S), \otimes )$ .

Example 2.18 Let $S=\{0, a, b, c, d\}$ be a poset determined by Figure 4 and $\&$ be a semigroup multiplication on S determined by the table below.

Figure 4 The partial order on S.

It is easy to verify that $(S, \cdot , \leq )$ is a non-unital posemigroup, and $\{0, a, b, c\}$ is a normal subset of S. Thus, by Proposition 2.17 we have that $L(S), \otimes )$ is a unital quantale.

If quantales are considered as posemigroups, then we have the following interesting result.

Proposition 2.19 Let $(Q, \&)$ be a quantale. Then $(L(Q), \otimes )$ is a unital quantale if and only if Q is a unital quantale.

Proof Let Q be a unital quantale with unit e. Then $\downarrow \! e$ is the unit of $(L(Q), \otimes )$ .

Conversely, let $(L(Q), \otimes )$ be a unital quantale with unit K. By Proposition 2.17, we see that K is a normal subset of Q. We let $e=\bigvee K$ . It is easy to show that e is the unit of Q, that is, Q is unital.

2.3 Constructing unital quantales by adding elements

For some special quantales, Guriérrez García and Höhle investigated the constructions of unital quantales by addition of an isolated element (see [Reference Gutiérrez García and Höhle8]). Next, based on the work of Guriérrez García and Höhle, we shall continue the research on the construction of unital quantales.

2.3.1 Adding two elements to construct unital quantales

Let L be a complete lattice, $\alpha \in L\backslash \{0, 1\}$ . Then $\alpha $ is called isolated (see [Reference Gutiérrez García and Höhle8]) in L if there exist two elements $\alpha ^-\leq \alpha $ and $\alpha ^+\geq \alpha $ of L such that the following properties hold:

$$ \begin{align*}(\downarrow\! \alpha)\backslash\{\alpha\}=\downarrow\!\alpha^-\ \mbox{and}\ (\uparrow\!\alpha)\backslash\{\alpha\}=\uparrow\!\alpha^+.\end{align*} $$

Lemma 2.20 $($ Guriérrez García and Höhle [Reference Gutiérrez García and Höhle8] $)$ Let L be a complete lattice, and $\top $ and e be two different elements satisfying the condition $L\cap \{\top , e\}=\emptyset $ . Then for every $\gamma \in L$ there exists a unique complete lattice-structure on $L^\gamma =L\cup \{\top , e\}$ satisfying the following conditions:

  1. (1) $L^\gamma $ is an extension of L.

  2. (2) The element $\top $ is the universal upper bound of $L^\gamma $ .

  3. (3) The element e is isolated and satisfies the conditions $e^-=\gamma $ and $e^+=\top $ .

Theorem 2.21 $($ Guriérrez García and Höhle [Reference Gutiérrez García and Höhle8] $)$ Let $(Q, \&)$ be a quantale, $\gamma \in Q\backslash \{1\}$ and let $Q^\gamma =Q\cup \{\top , e\}$ be the extension of the underlying lattice by an isolated element e in the sense of Lemma 2.20. Then there exists a unique quantale structure on $Q^\gamma $ with unit e and subquantale Q if and only if Q satisfies the following conditions for all $\alpha \in Q$ and $\beta \in Q$ with $\beta \not \leq \gamma $ :

(2.4) $$ \begin{align}(\gamma\&\alpha)\vee(\alpha\&\gamma)\leq \alpha,\end{align} $$
(2.5) $$ \begin{align}1\&\alpha\leq(\beta\&\alpha)\vee\alpha\ \mbox{and}\ \alpha\&1\leq(\alpha\&\beta)\vee\alpha.\end{align} $$

Remark 2.22

  1. (1) If a quantale $(Q, \&)$ has an element $\gamma $ satisfying (2.4) and (2.5), then Q can be extended to a unital quantale $Q^\gamma $ with unit e where the semigroup multiplication $\&^\gamma $ on $Q^\gamma $ is determined by

    $$ \begin{align*}\forall x,y\in Q^\gamma,\ x\&^\gamma y =\begin{cases} x\& y, & \mbox{if}\ \ x,y\in Q,\\ y, & \mbox{if}\ \ x=e,\\ x, & \mbox{if}\ \ y=e,\\ (1\&y)\vee y, & \mbox{if}\ \ x=\top, y\in Q,\\ x\vee(x\&1), & \mbox{if}\ \ y=\top, x\in Q,\\ \top, & \mbox{if}\ \ x=y=\top.\ \ \end{cases} \end{align*} $$
  2. (2) Since every non-top element $\gamma $ of a two-sided quantale satisfies the properties (2.4) and (2.5), every two-sided quantale Q can be extended to a unital quantale  $Q^\gamma $ .

Using a method similar to adding isolated elements, we shall give a new method to construct unital quantales.

Lemma 2.23 Let L be a complete lattice, and $\bot $ and e be two different elements satisfying the condition $L\cap \{\bot , e\}=\emptyset $ . Then for every $\gamma \in L$ there exists a unique complete lattice-structure on $L_\gamma =L\cup \{\bot , e\}$ satisfying the following conditions:

  1. (1) $L_\gamma $ is an extension of L.

  2. (2) The element $\bot $ is the universal lower bound of $L_\gamma $ .

  3. (3) The element e is isolated and satisfies the conditions $e^+=\gamma $ and $e^-=\bot $ .

Let $(Q, \&)$ be a quantale and $\gamma $ be a non-zero element of Q. Define a semigroup multiplication $\&_\gamma $ as follows

$$ \begin{align*}\forall x,y\in Q_\gamma,\ x\&_\gamma y =\begin{cases} x\& y, & \mbox{if}\ \ x,y\in Q,\\ y, & \mbox{if}\ \ x=e,\\ x, & \mbox{if}\ \ y=e,\\ \bot, & \mbox{if}\ \ x=\bot\ \mbox{or}\ y=\bot.\ \ \end{cases} \end{align*} $$

Theorem 2.24 Let $\gamma $ be a non-zero element of a quantale Q and let $Q_\gamma =Q\cup \{\bot , e\}$ be the extension of the underlying lattice by an isolated element e in the sense of Lemma 2.23. Then $(Q_\gamma , \&_\gamma )$ is a unital quantale with unit e if and only if $\gamma $ is the unit of Q.

Proof The proof is similar to that of Theorem 2.21.

2.3.2 Adding one element to construct unital quantales

Inspired by the work of Guriérrez García and Höhle, we will consider the method of adding one element to construct unital quantales. Let r be a non-zero element of quantale Q and $P_r(Q)\stackrel {\triangle }=\{y\in Q \mid (r\&y)\vee (x\&y)= y\vee (x\&y)\ \mbox {and} \ (y\&r)\vee (y\&x)=y\vee (y\&x)\ \mbox {for all}\ x\in Q \backslash \{0\}\}$ .

Proposition 2.25 Let Q be a quantale, $r\in Q\backslash \{0\}$ . Then we have

  1. (1) $P_r(Q)$ is a subquantale of Q.

  2. (2) $1\in P_r(Q) \Longleftrightarrow r\&1=1=1\&r$ .

  3. (3) if Q is a unital quantale with unit u, then $u\in P_r(Q) \Longleftrightarrow u=r$ .

  4. (4) if Q is a unital quantale with unit u, then $P_u(Q)=Q$ .

Proof Proof is straightforward.

Definition 2.26 A non-zero element r of quantale Q is called a weak unit if $P_r(Q)=Q$ .

Remark 2.27

  1. (1) If Q is a quantale with $\&=\&_1$ defined by (1.2), then every non-zero element of Q is a weak unit.

  2. (2) If Q is a quantale with $\&=\&_a$ and $a\neq 1$ defined by (1.2), then no element of Q is a weak unit.

  3. (3) If Q is a unital quantale, then by Proposition 2.25(3) we see that the unit is the unique weak unit in Q. Conversely, if a quantale Q has a unique weak unit, then Q is not necessarily a unital quantale (see Example 2.28).

Example 2.28 Let $Q=\{0, a, b, 1\}$ be a complete lattice with $0< a< b< 1$ and $\&$ be a semigroup multiplication on Q determined by the table below.

It is easy to verify that Q is a non-unital quantale and there is a unique weak unit 1 in Q.

Let r be a non-zero element of quantale Q and $e\not \in Q$ . We denote by $\overline {Q_r}$ the set $Q\cup \{e\}$ and define a partial order $\leq _r$ on $\overline {Q_r}$ and a semigroup multiplication $\&_e$ on $\overline {Q_r}$ as follows

$$ \begin{align*}\leq_r=\leq \cup\{(e, x) \mid r\leq x, x\in Q\}\cup\{(e, e), (0,e)\}\end{align*} $$

and

(2.6) $$ \begin{align}\forall x,y\in \overline{Q_r},\ \ x\&_e y=\begin{cases} x\&y, & \ \mbox{if}\ \ x,y\in Q,\\ y, & \ \mbox{if}\ \ x=e,\\ x, & \ \mbox{if}\ \ y=e.\end{cases}\end{align} $$

Proposition 2.29 Let Q be a quantale and r be a non-zero element of Q. Then we have

  1. (1) $(\overline {Q_r}, \leq _r)$ is a complete lattice and $e\vee x=r\vee x$ for all $x\in Q\backslash \{0\}$ .

  2. (2) e is an isolated element in $\overline {Q_r}$ and $e^+=r, e^-=0$ .

  3. (3) $(\overline {Q_r}, \leq _r, \&_e)$ is a unital posemigroup if and only if $x\leq (x\&r)\wedge (r\&x)$ for all $x\in Q$ .

Proof Proof is straightforward.

Proposition 2.30 Let Q be a quantale and r be a non-zero element of Q. Then $(\overline {Q_r}, \leq _r, \&_e)$ is a unital quantale if and only if r is a weak unit of Q.

Proof Let $(\overline {Q_r}, \leq _r, \&_e)$ be a unital quantale with unit e. Then by Proposition 2.29 we have that $(r\&y)\vee (x\&y)=(r\vee x)\& y=(e\vee x)\&_e y=(e\&_e y)\vee (x\&_e y)=y\vee (x\&y)$ for all $y\in Q, x\in Q\backslash \{0\}$ . Similarly, we have $(y\& r)\vee (y\&x)=y\vee (y\&x)$ . Thus, r is a weak unit of Q.

Conversely, we let r be a weak unit of Q. By Proposition 2.29, it is easy to check that the semigroup multiplication $\&_e$ distributes over arbitrary joins, that is, $(\overline {Q_r}, \leq _r, \&_e)$ is a unital quantale.

Corollary 2.31 If quantale Q has a weak unit r, then Q can be embedded into a unital quantale $\overline {Q_r}$ .

Example 2.32 $($ Guriérrez García and Höhle [Reference Gutiérrez García and Höhle8] $)$ Let $(G, \cdot , e)$ be a group with ${\mid G\mid \geq 2}$ . We provide G with the discrete order $"=\text{"}$ and subsequently we apply the MacNeille completion. This construction leads to a complete lattice $G_\infty =G\cup \{\bot , \top \}$ by adding the universal bounds to the discretely ordered set G. The binary operation $\ast $ on $G_\infty $ is determined by

$$ \begin{align*}\forall x,y\in Q_\infty,\ \ x\ast y=\begin{cases} x\cdot y, & \ \mbox{if}\ \ x,y\in G,\\ \bot, & \ \mbox{if}\ \ x=\bot\ \mbox{or}\ y=\bot,\\ \top, & \ \mbox{otherwise}.\end{cases}\end{align*} $$

It is easy to check that $(G_\infty , \ast )$ is a unital quantale and the unit e is an isolated element of $G_\infty $ with $e^+=\top , e^-=\bot $ .

Proposition 2.33 Let Q be a unital quantale such that the unit e is an isolated element and $e^-=0$ . Then $Q\cong \overline {K_r}$ for some quantale K with weak unit r if and only if $Q\backslash \{e\}$ is a subquantale of Q.

Proof Let K be a quantale with weak unit r. Then by Proposition 2.30 we have that $\overline {K_r}$ is a unital quantale with unit e and K is a subquantale of $\overline {K_r}$ . Since $Q\cong \overline {K_r}$ , we have that $Q\backslash \{e\}\cong K$ , which implies that $Q\backslash \{e\}$ is a subquantale of Q.

Conversely, we let $r=e^+$ and $K=Q\backslash \{e\}$ . Then by Proposition 2.29 we have that r is a weak unit of K. Further, we see that $Q=\overline {K_r}$ .

Corollary 2.34 Let Q be a unital quantale such that the unit e is an isolated element and $e^-=0$ . Then $Q\cong \overline {K_r}$ for some quantale K with weak unit r if and only if $x\&y=e$ implies that $x=e=y$ for all $x,y\in Q$ .

Remark 2.35

  1. (1) Let $(G_\infty , \ast )$ be the unital quantale in Example 2.32. Then $(G_\infty , \ast )$ is not of form $\overline {K_r}$ , that is, $G_\infty \not \cong \overline {K_r}$ .

  2. (2) Let $Q=\{0, a, 1\}$ be a quantale with $\&=\&_1$ . Then $1$ is a weak unit of Q. By Proposition 2.30, we see that $\overline {Q_1}$ is a unital quantale determined by Figure 5 and the following table.

    Figure 5 The partial order on $\overline {Q_1}$ .

Similarly, we can give another method of adding one element to construct unital quantales. Let Q be a quantale with $e\not \in Q$ . For a non-top element r of Q, we denote by $\overline {Q^r}$ the set $Q\cup \{e\}$ and define a partial order $\leq _r$ on $\overline {Q^r}$ and a binary operation $\&_e$ on $\overline {Q^r}$ as (2.6)

$$ \begin{align*}\leq_r=\leq \cup\{(x, e) \mid x\leq r, x\in Q\}\cup\{(e, e), (e,1)\}.\end{align*} $$

Lemma 2.36 Let Q be a quantale and r be a non-top element of Q. Then we have

  1. (1) $(\overline {Q^r}, \leq _r)$ is a complete lattice and $e\vee x=1$ for all $x\in Q$ with $x\not \leq r$ .

  2. (2) e is an isolated element in $\overline {Q^r}$ and $e^+=1, e^-=r$ .

  3. (3) $(\overline {Q^r}, \leq _r, \&_e)$ is a posemigroup with unit e if and only if $(x\&r)\vee (r\&x)\leq x\leq (x\&1)\wedge (1\&x)$ for all $x\in Q$ .

Theorem 2.37 Let $(Q, \&)$ be a quantale with non-top element r and let $\overline {Q^r}$ be the extension of the underlying lattice in the sense of Lemma 2.36. Then there exists a unique quantale structure on $\overline {Q^r}$ with unit e and subquantale Q if and only if Q satisfies the following conditions for all $x\in Q$ and $y\in Q$ with $y\not \leq r$ :

$$ \begin{align*}(r\&x)\vee(x\&r)\leq x,\end{align*} $$
$$ \begin{align*}1\&x=(y\&x)\vee x\ \mbox{and}\ x\&1=(x\&y)\vee x.\end{align*} $$

Proof The proof is similar to that of Theorem 2.21.

Let Q be a quantale with $\top \not \in Q$ and $\widehat {Q}_{\top }$ denote the set $Q\cup \{\top \}$ . We define a partial order $\leq _{\top }$ on $\widehat {Q}_{\top }$ and a semigroup multiplication $\&_{\top }$ on $\widehat {Q}_{\top }$ as follows

$$ \begin{align*}\leq_{\top}=\leq \cup\{(x, \top)\ \colon x\in \widehat{Q}_\top\}\end{align*} $$

and

$$ \begin{align*}\forall x,y\in \widehat{Q}_\top,\ \ x\&_\top y=\begin{cases} x\&y, & \ \mbox{if}\ \ x,y\in Q,\\ y, & \ \mbox{if}\ \ x=\top,\\ x, & \ \mbox{if}\ \ y=\top.\end{cases}\end{align*} $$

Proposition 2.38 Let $(Q, \&)$ be a quantale. Then $(\widehat {Q}_\top , \&_\top )$ is a unital quantale if and only if Q is a two-sided quantale.

Acknowledgements

The authors are very grateful to the referees for the very careful reading of the manuscript and very useful comments.

Footnotes

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12471436 and 12331016).

References

Abramsky, S. and Vickers, S., Quantale, observational logic and process semantics . Math. Struct. Comput. Sci. 3(1993), no. 2, 161227.Google Scholar
Adámek, J., Herrlich, H., and Strecker, G. E., Abstract and concrete categories: The joy of cats. John Wiley & Sons, New York, 1990.Google Scholar
Clementino, M. M., Hofmmann, D., and Tholen, W., Cauchy convergence in $V$ -normed categories, in preparation.Google Scholar
Dilworth, R. P., Noncommutative residuated lattices . Trans. Amer. Math. Soc. 46(1939), no. 3, 426444.Google Scholar
Eklund, P., Gutiérrez García, J., Höhle, U., and Kortelainen, J., Semigroups in complete lattices: Quantales, modules and related topics, Develepoments in Mathematics, 54, Springer, Berlin, 2018.Google Scholar
Fan, L., A new approach to quantitative domain theory . Electron. Notes Theor. Comput. Sci. 45(2001), 7787.Google Scholar
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., and Scott, D. S., A compendium of continuous lattices. Springer-Verlag, New York, 1980.Google Scholar
Gutiérrez García, J. and Höhle, U., Unitally nondistributive quantales. Preprint, 2024. arXiv:2402.17284v1 Google Scholar
Han, S. and Bao, Z., Locally unital quantum B-algebras . J. Algebra Appl. 21(2022), no. 7, 2250129.Google Scholar
Han, S., Xu, X., and Qin, F., The unitality of quantum $B$ -algebras . Int. J. Theor. Phys. 57(2018), no. 5, 15821590.Google Scholar
Han, S. and Zhao, B., Nuclei and conuclei on residuated lattices . Fuzzy Sets Syst. 172(2011), 5170.Google Scholar
Han, S. and Zhao, B., Remark on the unital quantale $Q\left[e\right]$ . Appl. Categ. Struct. 20(2012), no. 3, 239250.Google Scholar
Han, S. and Zhao, B., The foundation of quantale theory (In Chinese). Science Press, Beijing, 2016.Google Scholar
Hofmann, D. and Waszkiewicz, P., Approximation in quantale-enriched categories . Topol. Appl. 158(2011), no. 8, 963977.Google Scholar
Kruml, D. and Paseka, J., Algebraic and categorical aspects of quantales . Handbook Algebra 5(2008), 323326.Google Scholar
Mulvey, C. J., Suppl. Rend. Circ. Mat. Palermo Ser. II(1986), no. 12, 99104s.Google Scholar
Pan, F. and Han, S., Free $Q$ -algebras . Fuzzy Sets Syst. 247(2014), 138150.Google Scholar
Paseka, J., Quantale modules. Habilitation thesis, Masaryk University, 1999.Google Scholar
Paseka, J. and Kruml, D., Embeddings of quantales into simple quantales . J. Pure Appl. Algebra 148(2000), no. 2, 209216.Google Scholar
Pedersen, G. K., ${C}^{\ast }\!\!$ -algebras and their automorphism groups. Academic Press, London, 1979.Google Scholar
Resende, P., Quantales, finite observation and strong bismulation . Theor. Comput. Sci. 254(2001), nos. 1–2, 95149.Google Scholar
Rosenthal, K. I., Quantales and their applications. Longman Scientific & Technical, New York, 1990.Google Scholar
Rump, W., Quantum $B$ -algebras . Cent. Eur. J. Math. 11(2013), no. 11, 18811899.Google Scholar
Rump, W. and Yang, Y. C., Non-commutative logical algebras and algebraic quantales . Ann. Pure Appl. Logic 165(2014), no. 2, 759785.Google Scholar
Russo, C., Quantale modules, with applications to logic and image processing. Ph. D. thesis, University of Salerno, Salerno, 2007.Google Scholar
Solovyov, S. A., A representation theorem for quantale algebras . Contrib. Gen. Algebra 18(2008), 189198.Google Scholar
Wang, R. and Zhao, B., Quantale algebra and its algebraic ideal . Fuzzy Syst. Math. 24(2010), no. 2, 4449.Google Scholar
Ward, M., Structure residuation . Ann. Math. 39(1938), no. 3, 558569.Google Scholar
Ward, M. and Dilworth, R. P., Residuated lattice . Trans. Amer. Math. Soc. 45(1939), no. 3, 335354.Google Scholar
Yetter, D. N., Quantales and (noncommutative) linear logic . J. Symb. Log. 55(1990), no. 1, 4164.Google Scholar
Zhang, D., An enriched category approach to many valued topology . Fuzzy Sets Syst. 158(2007), 349366.Google Scholar
Figure 0

Figure 1 The partial order on $\mathbf {K_6}$.

Figure 1

Figure 2 The partial order on $\mathbf {K_8}$.

Figure 2

Figure 3 The partial order on Q.

Figure 3

Figure 4 The partial order on S.

Figure 4

Figure 5 The partial order on $\overline {Q_1}$.