We consider higher order functionals of the form
$F[u]=\int\limits_\Omega f(D^mu)\,{\rm d}x \qquad\text{for }u:\mathbb{R}^n\supset\Omega\to\mathbb{R}^N,$![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20161010014027465-0763:S1292811910000163:S1292811910000163_eqnU1.gif)
where the integrand $f:{\textstyle \bigodot^m}(\R^{n},\R^{N})\to\mathbb{R}$
, m ≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition.More precisely we assume that f fulfills the (p, q)-growth condition
\[\gamma|A|^p\le f(A)\le L(1+|A|^q)\qquad \mbox{for all }A \in {\textstyle \bigodot^m}(\R^{n},\R^{N}),\]![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20161010014027465-0763:S1292811910000163:S1292811910000163_eqnU3.gif?pub-status=live)
with γ, L > 0 and $1< p \le q<\min\big\{p+\frac1n,\frac{2n-1}{2n-2}p\big\}$
. We study minimizers of thefunctional $F[\cdot]$
and prove a partial $C^{m,\alpha}_{\rm loc}$
-regularity result.