1 Introduction
The study of graph
$C^*$
-algebras was motivated, among other reasons, by the Doplicher–Roberts algebra
$\mathcal {O}_\rho $
associated to a group representation
$\rho $
(see [Reference Kajiwara, Pinzari and Watatani19, Reference Mann, Raeburn and Sutherland22]). It is natural to imagine that a rank k graph is related to a fixed set of k representations
$\rho _1,\ldots ,\rho _k$
satisfying certain properties.
Given a compact group G and k finite-dimensional unitary representations
$\rho _i$
on Hilbert spaces
$\mathcal H_i$
of dimensions
$d_i$
for
$i=1,\ldots ,k$
, we first construct a product system
$\mathcal E$
indexed by the semigroup
$(\mathbb {N}^k,+)$
with fibers
$\mathcal E_{n}=\mathcal H_1^{\otimes n_1}\otimes \cdots \otimes \mathcal H_k^{\otimes n_k}$
for
$n=(n_1,\ldots ,n_k)\in \mathbb {N}^k$
. Using the representations
$\rho _i$
, the group G acts on each fiber of
$\mathcal {E}$
in a compatible way, so we obtain an action of G on the Cuntz–Pimsner algebra
$\mathcal {O}(\mathcal {E})$
. This action determines the crossed product
$\mathcal {O}(\mathcal {E})\rtimes G$
and the fixed point algebra
$\mathcal {O}(\mathcal {E})^G$
.
Inspired by Section 7 of [Reference Kajiwara, Pinzari and Watatani19] and Section 3.3 of [Reference Albandik and Meyer1], we define a higher rank Doplicher–Roberts algebra
$\mathcal O_{\rho _1,\ldots ,\rho _k}$
associated to the representations
$\rho _1,\ldots ,\rho _k$
. This algebra is constructed from intertwiners
$Hom (\rho ^n, \rho ^m)$
, where
$\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$
is acting on
$\mathcal {H}^n=\mathcal H_1^{\otimes n_1}\otimes \cdots \otimes \mathcal H_k^{\otimes n_k}$
for
$n=(n_1,\ldots ,n_k)\in \mathbb N^k$
. We show that
$\mathcal O_{\rho _1,\ldots ,\rho _k}$
is isomorphic to
$\mathcal {O}(\mathcal {E})^G$
.
If the representations
$\rho _1,\ldots ,\rho _k$
satisfy some mild conditions, we construct a k-colored graph
$\Lambda $
with vertex space
$\Lambda ^0=\hat {G}$
, and with edges
$\Lambda ^{\varepsilon _i}$
given by some matrices
$M_i$
indexed by
$\hat {G}$
. Here
$\varepsilon _i=(0,\ldots ,1,\ldots ,0)\in \mathbb {N}^k$
with
$1$
in position i are the canonical generators. For
$v,w\in \hat {G}$
, the matrices
$M_i$
have entries
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu1.png?pub-status=live)
which is the multiplicity of v in
$w\otimes \rho _i$
for
$i=1,\ldots ,k$
. Note that the matrices
$M_i$
commute because
$\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$
for all
$i,j=1,\ldots ,k$
and therefore
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu2.png?pub-status=live)
By a particular choice of isometric intertwiners in
$Hom(v,w\otimes \rho _i)$
for each
$v,w\in \hat {G}$
and for each i, we can choose bijections
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu3.png?pub-status=live)
obtaining a set of commuting squares for
$\Lambda $
. For
$k\ge 3$
, we need to check the associativity of the commuting squares, that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu4.png?pub-status=live)
as bijections from
$\Lambda ^{\varepsilon _i}\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _\ell }$
to
$\Lambda ^{\varepsilon _\ell }\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _i}$
for all
$i<j<\ell $
(see [Reference Fowler and Sims14]). If these conditions are satisfied, we obtain a rank k graph
$\Lambda $
, which is row-finite with no sources but, in general, is not unique.
In many situations,
$\Lambda $
is cofinal and it satisfies the aperiodicity condition, so
$C^*(\Lambda )$
is simple. For
$k=2$
, the
$C^*$
-algebra
$C^*(\Lambda )$
is unique when it is simple and purely infinite, because its K-theory depends only on the matrices
$M_1, M_2$
. It is an open question what happens for
$k\ge 3$
.
Assuming that the representations
$\rho _1,\ldots ,\rho _k$
determine a rank k graph
$\Lambda $
, we prove that the Doplicher–Roberts algebra
$\mathcal O_{\rho _1,\ldots ,\rho _k}$
is isomorphic to a corner of
$C^*(\Lambda )$
, so if
$C^*(\Lambda )$
is simple, then
$\mathcal O_{\rho _1,\ldots ,\rho _k}$
is Morita equivalent to
$C^*(\Lambda )$
. In particular cases, we can compute its K-theory using results from [Reference Evans11].
2 The product system
Product systems over arbitrary semigroups were introduced by Fowler [Reference Fowler13], inspired by work of Arveson, and studied by several authors (see [Reference Albandik and Meyer1, Reference Carlsen, Larsen, Sims and Vittadello4, Reference Sims and Yeend26]). In this paper, we are mostly interested in product systems
$\mathcal {E}$
indexed by
$( \mathbb {N}^k , +)$
, associated to some representations
$\rho _1,\ldots ,\rho _k$
of a compact group G. We remind the reader of some general definitions and constructions with product systems, but we restrict our attention to the Cuntz–Pimsner algebra
$\mathcal {O}(\mathcal {E})$
and we mention some properties in particular cases only (see Example 2.3 for
$P=\mathbb {N}^k$
).
Definition 2.1. Let
$(P, \cdot )$
be a discrete semigroup with identity e and let A be a
$C^*$
-algebra. A product system of
$C^*$
-correspondences over A indexed by P is a semigroup
$\mathcal {E}=\bigsqcup _{p\in P}\mathcal {E}_p$
and a map
$\mathcal {E}\to P$
such that:
-
• for each
$p\in P$ , the fiber
$\mathcal {E}_p\subset \mathcal {E}$ is a
$C^*$ -correspondence over A with inner product
$\langle \cdot ,\cdot \rangle _p$ ;
-
• the identity fiber
$\mathcal {E}_e$ is A viewed as a
$C^*$ -correspondence over itself;
-
• for
$p,q\in P\setminus \{e\}$ , the multiplication map
$$ \begin{align*}\mathcal{M}_{p,q}:\mathcal{E}_p\times \mathcal{E}_q\to \mathcal{E}_{pq},\;\; \mathcal{M}_{p,q}(x,y)= xy\end{align*} $$
$\mathcal {M}_{p,q}:\mathcal {E}_p\otimes _A \mathcal {E}_q\to \mathcal {E}_{pq}$ ; and
-
• multiplication in
$\mathcal {E}$ by elements of
$\mathcal {E}_e=A$ implements the right and left actions of A on each
$\mathcal {E}_p$ . In particular,
$\mathcal {M}_{p,e}$ is an isomorphism.
Let
$\phi _p:A\to \mathcal {L}(\mathcal {E}_p)$
be the homomorphism implementing the left action. The product system
$\mathcal {E}$
is said to be essential if each
$\mathcal {E}_p$
is an essential correspondence, that is, if the span of
$\phi _p(A)\mathcal {E}_p$
is dense in
$\mathcal {E}_p$
for all
$p\in P$
. In this case, the map
$\mathcal {M}_{e,p}$
is also an isomorphism.
If the maps
$\phi _p$
take values in
$\mathcal {K}(\mathcal {E}_p)$
, then the product system is called row-finite or proper. If all maps
$\phi _p$
are injective, then
$\mathcal {E}$
is called faithful.
Definition 2.2. Given a product system
$\mathcal {E}\to P$
over A and a
$C^*$
-algebra B, a map
$\psi :\mathcal {E}\to B$
is called a Toeplitz representation of
$\mathcal {E}$
if:
-
• denoting
$\psi _p:=\psi |_{\mathcal {E}_p}$ , each
$\psi _p:\mathcal {E}_p\to B$ is linear,
$\psi _e:A\to B$ is a
$*$ -homomorphism, and
$$ \begin{align*}\psi_e(\langle x,y\rangle_p)=\psi_p(x)^*\psi_p(y)\end{align*} $$
$x,y\in \mathcal {E}_p$ ; and
-
•
$\psi _p(x)\psi _q(y)=\psi _{pq}(xy)$ for all
$p,q\in P, x\in \mathcal {E}_p, y\in \mathcal {E}_q$ .
For each
$p\in P$
, we write
$\psi ^{(p)}$
for the homomorphism
$\mathcal {K}(\mathcal {E}_p)\to B$
obtained by extending the map
$\theta _{\xi , \eta }\mapsto \psi _p(\xi )\psi _p(\eta )^*$
, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu7.png?pub-status=live)
The Toeplitz representation
$\psi :\mathcal {E}\to B$
is Cuntz–Pimsner covariant if
$\psi ^{(p)}(\phi _p(a))=\psi _e(a)$
for all
$p\in P$
and all
$a\in A$
such that
$\phi _p(a)\in \mathcal {K}(\mathcal {E}_p)$
.
There is a
$C^*$
-algebra
$\mathcal {T}_A(\mathcal {E})$
called the Toeplitz algebra of
$\mathcal {E}$
and a representation
$i_{\mathcal {E}}:\mathcal {E}\to \mathcal {T}_A(\mathcal {E})$
which is universal in the following sense:
$\mathcal {T}_A(\mathcal {E})$
is generated by
$i_{\mathcal {E}}(\mathcal {E})$
and, for any representation
$\psi :\mathcal {E}\to B$
, there is a homomorphism
$\psi _*:\mathcal {T}_A(\mathcal {E})\to B$
such that
$\psi _*\circ i_{\mathcal {E}}=\psi $
.
The Cuntz–Pimsner algebra
$\mathcal {O}_A(\mathcal {E})$
of a product system
$\mathcal {E}\to P$
is universal for Cuntz–Pimsner covariant representations.
There are various extra conditions on a product system
$\mathcal {E}\to P$
and several other notions of covariance besides the Cuntz–Pimsner covariance from Definition 2.2, which allow one to define the Cuntz–Pimsner algebra
$\mathcal {O}_A(\mathcal {E})$
or the Cuntz–Nica–Pimsner algebra
$\mathcal {N}\mathcal {O}_A(\mathcal {E})$
satisfying certain properties (see [Reference Albandik and Meyer1, Reference Carlsen, Larsen, Sims and Vittadello4, Reference Dor-On and Kakariadis10, Reference Fowler13, Reference Sims and Yeend26], among others). We mention that
$\mathcal {O}_A(\mathcal {E})$
(or
$\mathcal {N}\mathcal {O}_A(\mathcal {E})$
) comes with a covariant representation
$j_{\mathcal {E}}:\mathcal {E}\to \mathcal {O}_A(\mathcal {E})$
and is universal in the following sense:
$\mathcal {O}_A(\mathcal {E})$
is generated by
$j_{\mathcal {E}}(\mathcal {E})$
and, for any covariant representation
$\psi :\mathcal {E}\to B$
, there is a homomorphism
$\psi _*:\mathcal {O}_A(\mathcal {E})\to B$
such that
$\psi _*\circ j_{\mathcal {E}}=\psi $
. Under certain conditions,
$\mathcal {O}_A(\mathcal {E})$
satisfies a gauge invariant uniqueness theorem.
Example 2.3. For a product system
$\mathcal {E}\to P$
with fibers
$\mathcal {E}_p$
that are nonzero finite-dimensional Hilbert spaces, and, in particular,
$A=\mathcal {E}_e=\mathbb {C}$
, let us fix an orthonormal basis
$\mathcal {B}_p$
in
$\mathcal {E}_p$
. Then a Toeplitz representation
$\psi :\mathcal {E}\to B$
gives rise to a family of isometries
$\{\psi (\xi ): \xi \in \mathcal {B}_p\}_{p\in P}$
with mutually orthogonal range projections. In this case,
$\mathcal {T}(\mathcal {E})=\mathcal {T}_{\mathbb {C}}(\mathcal {E})$
is generated by a collection of Cuntz–Toeplitz algebras which interact according to the multiplication maps
$\mathcal {M}_{p,q}$
in
$\mathcal {E}$
.
A representation
$\psi :\mathcal {E}\to B$
is Cuntz–Pimsner covariant if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu8.png?pub-status=live)
for all
$p\in P$
. The Cuntz–Pimsner algebra
$\mathcal {O}(\mathcal {E})=\mathcal {O}_{\mathbb {C}}(\mathcal {E})$
is generated by a collection of Cuntz algebras, so it could be thought of as a multidimensional Cuntz algebra. Fowler proved in [Reference Fowler12] that if the function
$p\mapsto \dim \mathcal {E}_p$
is injective, then the algebra
${\mathcal O}(\mathcal {E})$
is simple and purely infinite. For other examples of multidimensional Cuntz algebras, see [Reference Burgstaller3].
Example 2.4. A row-finite k-graph with no sources
$\Lambda $
(see [Reference Kumjian, Pask, Raeburn and Renault18]) determines a product system
$\mathcal {E}\to \mathbb {N}^k$
with
$\mathcal {E}_0=A=C_0(\Lambda ^0)$
and
$\mathcal {E}_n=\overline {C_c(\Lambda ^n)}$
for
$n\neq 0$
such that we have a
$\mathbb {T}^k$
-equivariant isomorphism
$\mathcal {O}_A(\mathcal {E})\cong C^*(\Lambda )$
. Recall that, for product systems indexed by
$\mathbb {N}^k$
, the universal property induces a gauge action on
$\mathcal {O}_A(\mathcal {E})$
defined by
$\gamma _z(j_{\mathcal {E}}(\xi ))=z^nj_{\mathcal {E}}(\xi )$
for
$z\in \mathbb {T}^k$
and
$\xi \in \mathcal {E}_n$
.
The following two definitions and two results are taken from [Reference Deaconu, Huang and Sims7]; see also [Reference Hao and Ng15, Reference Kumjian and Pask17].
Definition 2.5. An action
$ \beta $
of a locally compact group
$ G $
on a product system
$ \mathcal {E} \to P $
over A is a family
$ (\beta ^{p})_{p \in P} $
such that
$ \beta ^{p} $
is an action of
$ G $
on each fiber
$\mathcal {E}_{p} $
compatible with the action
$\alpha =\beta ^e$
on A, and, furthermore, the actions
$(\beta ^p)_{p\in P}$
are compatible with the multiplication maps
$\mathcal {M}_{p,q}$
in the sense that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu9.png?pub-status=live)
for all
$ g \in G $
,
$ x \in \mathcal {E}_{p} $
and
$ y \in \mathcal {E}_{q} $
.
Definition 2.6. If
$ \beta $
is an action of
$ G $
on the product system
$\mathcal {E} \to P $
, we define the crossed product
$\mathcal {E} \rtimes _{\beta } G $
as the product system indexed by
$ P $
with fibers
$ \mathcal {E}_{p} \rtimes _{\beta ^{p}} G $
, which are
$ C^{\ast } $
-correspondences over
$ A \rtimes _{\alpha } G $
. For
$ \zeta \in C_c(G,\mathcal {E}_{p}) $
and
$ \eta \in C_c(G,\mathcal {E}_{q}) $
, the product
$ \zeta \eta \in C_c(G,\mathcal {E}_{p q}) $
is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu10.png?pub-status=live)
Proposition 2.7. The set
$ \mathcal {E} \rtimes _{\beta } G = \bigsqcup _{p \in P} \mathcal {E}_{p} \rtimes _{\beta ^{p}} G $
with the above multiplication satisfies all the properties of a product system of
$ C^{\ast } $
-correspondences over
$ A \rtimes _{\alpha } G $
.
Proposition 2.8. Suppose that a locally compact group
$ G $
acts on a row-finite and faithful product system
$ \mathcal {E} $
indexed by
$ P = (\mathbb {N}^{k},+) $
via automorphisms
$ \beta ^{p}_{g} $
. Then
$ G $
acts on the Cuntz–Pimsner algebra
$\mathcal {O}_{A}(\mathcal {E}) $
via automorphisms denoted by
$ \gamma _{g} $
. Moreover, if
$ G $
is amenable, then
$ \mathcal {E} \rtimes _{\beta } G $
is row-finite and faithful, and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu11.png?pub-status=live)
Now we define the product system associated to k representations of a compact group G. We limit ourselves to finite-dimensional unitary representations, even though the definition makes sense in greater generality.
Definition 2.9. Given a compact group G and k finite-dimensional unitary representations
$\rho _i$
of G on Hilbert spaces
$\mathcal H_i$
for
$i=1,\ldots ,k$
, we construct the product system
$\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$
indexed by the commutative monoid
$(\mathbb N^k,+)$
, with fibers
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu12.png?pub-status=live)
for
$n=(n_1,\ldots ,n_k)\in \mathbb {N}^k$
; in particular,
$A=\mathcal E_0=\mathbb C$
. The multiplication maps
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu13.png?pub-status=live)
in
$\mathcal {E}$
are defined by using the standard isomorphisms
$\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$
for all
$i<j$
. The associativity in
$\mathcal {E}$
follows from the fact that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu14.png?pub-status=live)
as maps from
$\mathcal {E}_n\times \mathcal {E}_m\times \mathcal {E}_p$
to
$\mathcal {E}_{n+m+p}.$
Then
$\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$
is called the product system of the representations
$\rho _1,\ldots ,\rho _k$
.
Remark 2.10. Similarly, a semigroup P of unitary representations of a group G determines a product system
$\mathcal {E}\to P$
.
Proposition 2.11. With notation as in Definition 2.9, assume that
$d_i=\dim \mathcal {H}_i\ge 2$
. Then the Cuntz–Pimsner algebra
$\mathcal {O}(\mathcal {E})$
associated to the product system
$\mathcal {E}\to \mathbb {N}^k$
described above is isomorphic with the
$C^*$
-algebra of a rank k graph
$\Gamma $
with a single vertex and with
$|\Gamma ^{\varepsilon _i}|=d_i$
. This isomorphism is equivariant for the gauge action. Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu15.png?pub-status=live)
where
$\mathcal O_n$
is the Cuntz algebra.
Proof. Indeed, by choosing a basis in each
$\mathcal {H}_i$
, we get the edges
$\Gamma ^{\varepsilon _i}$
in a k-colored graph
$\Gamma $
with a single vertex. The isomorphisms
$\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$
determine the factorization rules of the form
$ef=fe$
for
$e\in \Gamma ^{\varepsilon _i}$
and
$f\in \Gamma ^{\varepsilon _j}$
, which obviously satisfy the associativity condition. In particular, the corresponding isometries in
$C^*(\Gamma )$
commute and determine, by the universal property, a surjective homomorphism
$\varphi $
onto
$\mathcal {O}(\mathcal {E})$
, preserving the gauge action. Using the gauge invariant uniqueness theorem for k-graph algebras, the map
$\varphi $
is an isomorphism. In particular,
$\mathcal {O}(\mathcal {E})\cong \mathcal O_{d_1}\otimes \cdots \otimes \mathcal O_{d_k}$
.
Remark 2.12. For
$d_i\ge 2$
, the
$C^*$
-algebra
$\mathcal {O}(\mathcal {E})\cong C^*(\Gamma )$
is always simple and purely infinite since it is a tensor product of simple and purely infinite
$C^*$
-algebras. If
$d_i=1$
for some i, then the isomorphism in Proposition 2.11 still holds, but
$C^*(\Gamma )\cong \mathcal {O}(\mathcal {E})$
contains a copy of
$C(\mathbb {T})$
, so it is not simple. Of course, if
$d_i=1$
for all i, then
$\mathcal {O}(\mathcal {E})\cong C(\mathbb {T}^k)$
. For more on single vertex rank k graphs, see [Reference Davidson and Yang5, Reference Davidson and Yang6].
Proposition 2.13. The compact group G acts on each fiber
$\mathcal {E}_n$
of the product system
$\mathcal E$
via the representation
$\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$
. This action is compatible with the multiplication maps and commutes with the gauge action of
$\mathbb {T}^k$
. The crossed product
$\mathcal E\rtimes G$
becomes a row-finite and faithful product system indexed by
$\mathbb N^k$
over the group
$C^*$
-algebra
$C^*(G)$
. Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu16.png?pub-status=live)
Proof. Indeed, for
$g\in G$
and
$\xi \in \mathcal {E}_n=\mathcal {H}^n$
, we define
$g\cdot \xi =\rho ^n(g)(\xi )$
, and since
$\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$
, we have
$g\cdot (\xi \otimes \eta )=g\cdot \xi \otimes g\cdot \eta $
for
$\xi \in \mathcal {E}_n, \eta \in \mathcal {E}_m$
. Clearly,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu17.png?pub-status=live)
so the action of G commutes with the gauge action. Using Proposition 2.7,
$\mathcal E\rtimes G$
becomes a product system indexed by
$\mathbb N^k$
over
$C^*(G)\cong \mathbb {C}\rtimes G$
with fibers
$\mathcal {E}_n\rtimes G$
. The isomorphism
$\mathcal {O}(\mathcal {E}) \rtimes G \cong \mathcal {O}_{C^*(G)}(\mathcal {E} \rtimes G)$
follows from Proposition 2.8.
Corollary 2.14. Since the action of G commutes with the gauge action, the group G acts on the core algebra
$\mathcal {F}=\mathcal {O}(\mathcal {E})^{\mathbb {T}^k}$
.
Remark 2.15. In some cases,
$\mathcal {O}(\mathcal {E})\rtimes G$
is isomorphic to the self-similar k-graph
$C^*$
-algebras
$\mathcal {O}_{G,\Lambda }$
introduced in [Reference Li and Yang21]. Moreover, for a self-similar k-graph
$(G,\Lambda )$
with
$|\Lambda ^0|=1$
, we have
$\mathcal {O}_{G,\Lambda }\cong \mathcal {Q}(\Lambda \bowtie G)$
, where
$\Lambda \bowtie G$
is a Zappa–Szép product and
$\mathcal {Q}(\Lambda \bowtie G)$
is its boundary quotient
$C^*$
-algebra (see Example 3.10(4) in [Reference Li and Yang21] and Theorem 3.3 in [Reference Li and Yang20]). I thank the referee for bringing this relationship to my attention.
3 The Doplicher–Roberts algebra
The Doplicher–Roberts algebras
$\mathcal {O}_\rho $
, denoted by
${\mathcal O}_G$
in [Reference Doplicher and Roberts8], were introduced to construct a new duality theory for compact Lie groups G that strengthens the Tannaka–Krein duality. Here
$\rho $
is the n-dimensional representation of G defined by the inclusion
$G\subseteq U(n)$
in some unitary group
$U(n)$
. Let
${\mathcal T}_G$
denote the representation category whose objects are tensor powers
$\rho ^p=\rho ^{\otimes p}$
for
$p\ge 0$
, and whose arrows are the intertwiners
$Hom(\rho ^p, \rho ^q)$
. The group G acts via
$\rho $
on the Cuntz algebra
${\mathcal O}_n$
and
${\mathcal O}_G={\mathcal O}_\rho $
is identified in [Reference Doplicher and Roberts8] with the fixed point algebra
${\mathcal O}_n^G$
. If
$\sigma $
denotes the restriction to
${\mathcal O}_\rho $
of the canonical endomorphism of
$\mathcal {O}_n$
, then
${\mathcal T}_G$
can be reconstructed from the pair
$({\mathcal O}_\rho ,\sigma )$
. Subsequently, Doplicher–Roberts algebras were associated to any object
$\rho $
in a strict tensor
$C^*$
-category (see [Reference Doplicher and Roberts9]).
Given finite-dimensional unitary representations
$\rho _1,\ldots ,\rho _k$
of a compact group G on Hilbert spaces
$\mathcal H_1,\ldots , \mathcal H_k$
, we construct a Doplicher–Roberts algebra
$\mathcal O_{\rho _1,\ldots ,\rho _k}$
from intertwiners
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu18.png?pub-status=live)
where, for
$n=(n_1,\ldots ,n_k)\in \mathbb N^k$
, the representation
$\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$
acts on
$\mathcal {H}^n=\mathcal H_1^{\otimes n_1}\otimes \cdots \otimes \mathcal H_k^{\otimes n_k}$
. Note that
$\rho ^0=\iota $
is the trivial representation of G, acting on
$\mathcal {H}^0=\mathbb {C}$
. This Doplicher–Roberts algebra is a subalgebra of
$\mathcal {O}(\mathcal {E})$
for the product system
$\mathcal {E}$
, as in Definition 2.9.
Lemma 3.1. Consider
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu19.png?pub-status=live)
Then the linear span of
$\mathcal {A}_0$
becomes a
$*$
-algebra
$\mathcal {A}$
with appropriate multiplication and involution. This algebra has a natural
$\mathbb {Z}^k$
-grading coming from a gauge action of
$\mathbb {T}^k$
. Moreover, the Cuntz–Pimsner algebra
$\mathcal {O}(\mathcal {E})$
of the product system
$\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$
is equivariantly isomorphic to the
$C^*$
-closure of
$\mathcal {A}$
in the unique
$C^*$
-norm for which the gauge action is isometric.
Proof. Recall that the Cuntz algebra
$\mathcal {O}_n$
contains a canonical Hilbert space
$\mathcal {H}$
of dimension n and it can be constructed as the closure of the linear span of
$ \bigcup _{p,q\in \mathbb {N}}\mathcal {L}(\mathcal H^p,\mathcal H^q)$
using embeddings
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu20.png?pub-status=live)
where
$\mathcal {H}^p=\mathcal H^{\otimes p}$
and
$I:\mathcal {H}\to \mathcal {H}$
is the identity map. This linear span becomes a
$*$
-algebra with a multiplication given by composition and an involution (see [Reference Doplicher and Roberts8] and Proposition 2.5 in [Reference Katsoulis16]).
Similarly, for all
$r\in \mathbb {N}^k$
, we consider embeddings
$\mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)\subseteq \mathcal {L}(\mathcal {H}^{n+r},\mathcal {H}^{m+r})$
given by
$T\mapsto T\otimes I_r$
, where
$I_r:{\mathcal H}^r\to {\mathcal H}^r$
is the identity map, and we endow
$\mathcal {A}$
with a multiplication given by composition and an involution. More precisely, if
$S\in \mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)$
and
$T\in \mathcal {L}(\mathcal {H}^q,\mathcal {H}^p)$
, then the product
$ST$
is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu21.png?pub-status=live)
where we write
$p\vee n$
for the coordinatewise maximum. This multiplication is well defined in
$\mathcal {A}$
and is associative. The adjoint of
$T\in \mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)$
is
$T^*\in \mathcal {L}(\mathcal {H}^m,\mathcal {H}^n)$
.
There is a natural
$\mathbb Z^k$
-grading on
$\mathcal {A}$
given by the gauge action
$\gamma $
of
$\mathbb {T}^k$
, where, for
$z=(z_1,\ldots ,z_k)\in \mathbb {T}^k$
and
$T\in \mathcal {L}(\mathcal {H}^n,\mathcal {H}^m)$
, we define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu22.png?pub-status=live)
Adapting the argument in Theorem 4.2 in [Reference Doplicher and Roberts9] for
$\mathbb {Z}^k$
-graded
$C^*$
-algebras, the
$C^*$
-closure of
$\mathcal {A}$
in the unique
$C^*$
-norm for which
$\gamma _z$
is isometric is well defined. The map
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu23.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu24.png?pub-status=live)
for
$T_i\in \mathcal {L}(\mathcal H_i^{n_i},\mathcal H_i^{m_i})$
for
$i=1,\ldots ,k$
preserves the gauge action and it can be extended to an equivariant isomorphism from
$\mathcal {O}(\mathcal {E})\cong \mathcal {O}_{d_1}\otimes \cdots \otimes \mathcal {O}_{d_k}$
to the
$C^*$
-closure of
$\mathcal {A}$
. Note that the closure of
$ \bigcup _{n\in \mathbb {N}^k}\mathcal {L}(\mathcal H^n,\mathcal H^n)$
is isomorphic to the core
$\mathcal {F}=\mathcal {O}(\mathcal {E})^{\mathbb {T}^k}$
, that is the fixed point algebra under the gauge action, which is a UHF-algebra.
To define the Doplicher–Roberts algebra
$\mathcal O_{\rho _1,\ldots ,\rho _k}$
, we again identify
$Hom(\rho ^n,\rho ^m)$
with a subset of
$Hom(\rho ^{n+r},\rho ^{m+r})$
for each
$r\in \mathbb N^k$
, via
$T\mapsto T\otimes I_r$
. After this identification, it follows that the linear span
${}^0{\mathcal O}_{\rho _1,\ldots , \rho _k}$
of
$ \bigcup _{m,n\in \mathbb {N}^k}Hom(\rho ^n, \rho ^m)\subseteq \mathcal {A}_0$
has a natural multiplication and involution inherited from
$\mathcal {A}$
. Indeed, a computation shows that if
$S\in Hom(\rho ^n, \rho ^m)$
and
$T\in Hom(\rho ^q,\rho ^p)$
, then
$S^*\in Hom(\rho ^m, \rho ^n)$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu25.png?pub-status=live)
so
$(S\otimes I_{p\vee n-n})\circ (T\otimes I_{p\vee n-p})\in Hom(\rho ^{q+p\vee n-p}, \rho ^{m+p\vee n-n})$
and
${}^0{\mathcal O}_{\rho _1,\ldots , \rho _k}$
is closed under these operations. Since the action of G commutes with the gauge action, there is a natural
$\mathbb Z^k$
-grading of
${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}$
given by the gauge action
$\gamma $
of
$\mathbb {T}^k$
on
$\mathcal {A}$
.
It follows that the closure
${\mathcal O}_{\rho _1,\ldots , \rho _k}$
of
${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}$
in
$\mathcal {O}(\mathcal {E})$
is well defined, obtaining the Doplicher–Roberts algebra associated to the representations
$\rho _1,\ldots ,\rho _k$
. This
$C^*$
-algebra also has a
$\mathbb Z^k$
-grading and a gauge action of
$\mathbb {T}^k$
. By construction,
${\mathcal O}_{\rho _1,\ldots , \rho _k}\subseteq \mathcal {O}(\mathcal {E})$
.
Remark 3.2. For a compact Lie group G, our Doplicher–Roberts algebra
${\mathcal O}_{\rho _1,\ldots , \rho _k}$
is Morita equivalent with the higher rank Doplicher–Roberts algebra
$\mathcal {D}$
defined in [Reference Albandik and Meyer1]. It is also the section
$C^*$
-algebra of a Fell bundle over
$\mathbb {Z}^k$
.
Theorem 3.3. Let
$\rho _i$
be finite-dimensional unitary representations of a compact group G on Hilbert spaces
$\mathcal H_i$
of dimensions
$d_i\ge 2$
for
$i=1,\ldots ,k$
. Then the Doplicher–Roberts algebra
${\mathcal O}_{\rho _1,\ldots ,\rho _k}$
is isomorphic to the fixed point algebra
${\mathcal O}(\mathcal {E})^G\cong (\mathcal O_{d_1}\otimes \cdots \otimes \mathcal O_{d_k})^G$
, where
$\mathcal {E}=\mathcal {E}(\rho _1,\ldots ,\rho _k)$
is the product system described in Definition 2.9.
Proof. We know from Lemma 3.1 that
${\mathcal O}(\mathcal {E})$
is isomorphic to the
$C^*$
-algebra generated by the linear span of
$ \mathcal {A}_0= \bigcup _{m,n\in \mathbb {N}^k}\mathcal {L}({\mathcal H}^n, {\mathcal H}^m)$
. The group G acts on
$\mathcal {L}({\mathcal H}^n, {\mathcal H}^m)$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu26.png?pub-status=live)
and the fixed point set is
$Hom(\rho ^n, \rho ^m)$
. Indeed, we have
$g\cdot T=T$
if and only if
$T\rho ^n(g)=\rho ^m(g)T$
. This action is compatible with the embeddings and the operations, so it extends to the
$*$
-algebra
$\mathcal {A}$
and the fixed point algebra is the linear span of
$ \bigcup _{m,n\in \mathbb {N}^k}Hom(\rho ^n, \rho ^m)$
.
It follows that
${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}\subseteq {\mathcal O}(\mathcal {E})^G$
and therefore its closure
${\mathcal O}_{\rho _1,\ldots ,\rho _k}$
is isomorphic to a subalgebra of
${\mathcal O}(\mathcal {E})^G$
. For the other inclusion, any element in
${\mathcal O}(\mathcal {E})^G$
can be approximated with an element from
${}^0{\mathcal O}_{\rho _1,\ldots ,\rho _k}$
, and hence
${\mathcal O}_{\rho _1,\ldots ,\rho _k}=\mathcal {O}(\mathcal {E})^G$
.
Remark 3.4. By left tensoring with
$I_r$
for
$r\in \mathbb {N}^k$
, we obtain some canonical unital endomorphisms
$\sigma _r$
of
${\mathcal O}_{\rho _1,\ldots ,\rho _k}$
.
In the next section, we show that, in many cases,
$\mathcal O_{\rho _1,\ldots ,\rho _k}$
is isomorphic to a corner of
$C^*(\Lambda )$
for a rank k graph
$\Lambda $
, so, in some cases, we can compute its K-theory. It would be nice to express the K-theory of
$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$
in terms of the maps
$\pi \mapsto \pi \otimes \rho _i$
defined on the representation ring
$\mathcal {R}(G)$
.
4 The rank k graphs
For convenience, we first collect some facts about higher rank graphs, introduced in [Reference Kumjian, Pask, Raeburn and Renault18]. A rank k graph or k-graph
$(\Lambda , d)$
consists of a countable small category
$\Lambda $
with range and source maps r and s together with a functor
$d : \Lambda \rightarrow \mathbb {N}^k$
called the degree map, satisfying the factorization property: for every
$\lambda \in \Lambda $
and all
$m, n \in \mathbb {N}^k$
with
$d( \lambda ) = m + n$
, there are unique elements
$\mu , \nu \in \Lambda $
such that
$\lambda = \mu \nu $
and
$d( \mu ) = m$
,
$d( \nu ) = n$
. For
$n \in \mathbb {N}^k$
, we write
$\Lambda ^n := d^{-1} (n)$
and call it the set of paths of degree n. For
$\varepsilon _i=(0,\ldots ,1,\ldots ,0)$
with
$1$
in position i, the elements in
$\Lambda ^{\varepsilon _i}$
are called edges and the elements in
$\Lambda ^0$
are called vertices.
A k-graph
$\Lambda $
can be constructed from
$\Lambda ^0$
and from its k-colored skeleton
$\Lambda ^{\varepsilon _1}\cup \cdots \cup \Lambda ^{\varepsilon _k}$
using a complete and associative collection of commuting squares or factorization rules (see [Reference Sims25]).
The k-graph
$\Lambda $
is row-finite if, for all
$n\in \mathbb {N}^k$
and all
$v\in \Lambda ^0$
, the set
$v\Lambda ^n := \{\lambda \in \Lambda ^n : r(\lambda ) = v\}$
is finite. It has no sources if
$v\Lambda ^n\neq \emptyset $
for all
$v\in \Lambda ^0$
and
$n\in \mathbb {N}^k$
. A k-graph
$\Lambda $
is said to be irreducible (or strongly connected) if, for every
$u,v\in \Lambda ^0$
, there is
$\lambda \in \Lambda $
such that
$u = r(\lambda )$
and
$v = s(\lambda )$
.
Recall that
$C^*(\Lambda )$
is the universal
$C^*$
-algebra generated by a family
$\{S_\lambda : \lambda \in \Lambda \}$
of partial isometries satisfying:
-
•
$\{S_v:v\in \Lambda ^0\}$ is a family of mutually orthogonal projections;
-
•
$S_{\lambda \mu }=S_\lambda S_\mu $ for all
$\lambda , \mu \in \Lambda $ such that
$s(\lambda ) = r(\mu )$ ;
-
•
$S_\lambda ^*S_\lambda = S_{s(\lambda )}$ for all
$\lambda \in \Lambda $ ; and
-
• for all
$v\in \Lambda ^0$ and
$n\in \mathbb {N}^k$ ,
$$ \begin{align*} S_v=\sum_{\lambda\in v\Lambda^n}S_\lambda S_\lambda^*.\end{align*} $$
A k-graph
$\Lambda $
is said to satisfy the aperiodicity condition if, for every vertex
$v\in \Lambda ^0$
, there is an infinite path
$x\in v\Lambda ^\infty $
such that
$\sigma ^mx\neq \sigma ^nx$
for all
$m\neq n$
in
$\mathbb {N}^k$
, where
$\sigma ^m:\Lambda ^\infty \to \Lambda ^\infty $
are the shift maps. We say that
$\Lambda $
is cofinal if, for every
$x\in \Lambda ^\infty $
and
$v\in \Lambda ^0$
, there is
$\lambda \in \Lambda $
and
$n\in \mathbb {N}^k$
such that
$s(\lambda )=x(n)$
and
$r(\lambda )=v$
.
Assume that
$\Lambda $
is row-finite with no sources and that it satisfies the aperiodicity condition. Then
$C^*(\Lambda )$
is simple if and only if
$\Lambda $
is cofinal (see Proposition 4.8 in [Reference Kumjian, Pask, Raeburn and Renault18] and Theorem 3.4 in [Reference Robertson and Sims23]).
We say that a path
$\mu \in \Lambda $
is a loop with an entrance if
$s(\mu )=r(\mu )$
, and there exists
$\alpha \in s(\mu )\Lambda $
such that
$d(\mu )\ge d(\alpha )$
and there is no
$\beta \in \Lambda $
with
$\mu = \alpha \beta $
. We say that every vertex connects to a loop with an entrance if, for every
$v\in \Lambda ^0$
, there is a loop with an entrance
$\mu \in \Lambda $
, and a path
$\lambda \in \Lambda $
with
$r(\lambda )=v$
and
$s(\lambda )=r(\mu )=s(\mu )$
. If
$\Lambda $
satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, then
$C^*(\Lambda )$
is purely infinite (see Proposition 4.9 in [Reference Kumjian, Pask, Raeburn and Renault18] and Proposition 8.8 in [Reference Sims24]).
Given finite-dimensional unitary representations
$\rho _i$
of a compact group G on Hilbert spaces
$\mathcal H_i$
for
$i=1,\ldots ,k$
, we want to construct a rank k graph
$\Lambda =\Lambda (\rho _1,\ldots ,\rho _k)$
. Let R be the set of equivalence classes of irreducible summands
$\pi :G\to U(\mathcal {H}_\pi )$
which appear in the tensor powers
$\rho ^n=\rho _1^{\otimes n_1}\otimes \cdots \otimes \rho _k^{\otimes n_k}$
for
$n\in \mathbb {N}^k$
, as in [Reference Mann, Raeburn and Sutherland22]. Take
$\Lambda ^0=R$
and, for each
$i=1,\ldots ,k$
, consider the set of edges
$\Lambda ^{\varepsilon _i}$
which are uniquely determined by the matrices
$M_i$
with entries
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu28.png?pub-status=live)
where
$v,w\in R$
. The matrices
$M_i$
commute since
$\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$
and therefore
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu29.png?pub-status=live)
for all
$i<j$
. This allows us to fix some bijections
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu30.png?pub-status=live)
for all
$1\le i<j\le k$
, which determine the commuting squares of
$\Lambda $
. As usual,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu31.png?pub-status=live)
For
$k\ge 3$
, we also need to verify that
$\lambda _{ij}$
can be chosen to satisfy the associativity condition, that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu32.png?pub-status=live)
as bijections from
$\Lambda ^{\varepsilon _i}\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _\ell }$
to
$\Lambda ^{\varepsilon _\ell }\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _i}$
for all
$i<j<\ell $
.
Remark 4.1. Many times
$R=\hat {G}$
, so
$\Lambda ^0=\hat {G}$
, for example, if
$\rho _i$
are faithful and
$\rho _i(G)\subseteq SU(\mathcal {H}_i)$
or if G is finite,
$\rho _i$
are faithful and
$\dim \rho _i\ge 2$
for all
$i=1,\ldots ,k$
(see Lemma 7.2 and Remark 7.4 in [Reference Kajiwara, Pinzari and Watatani19]).
Proposition 4.2. Given representations
$\rho _1,\ldots ,\rho _k$
as above, assume that
$\rho _i$
are faithful and that
$R=\hat {G}$
. Then each choice of bijections
$\lambda _{ij}$
satisfying the associativity condition determines a rank k graph
$\Lambda $
which is cofinal and locally finite with no sources.
Proof. Indeed, the sets
$\Lambda ^{\varepsilon _i}$
are uniquely determined and the choice of bijections
$\lambda _{ij}$
satisfying the associativity condition is enough to determine
$\Lambda $
. Since the entries of the matrices
$M_i$
are finite and there are no zero rows, the graph is locally finite with no sources. To prove that
$\Lambda $
is cofinal, fix a vertex
$v\in \Lambda ^0$
and an infinite path
$x\in \Lambda ^\infty $
. Arguing as in Lemma 7.2 in [Reference Kajiwara, Pinzari and Watatani19], any
$w\in \Lambda ^0$
, in particular,
$w=x(n)$
for a fixed n, can be joined by a path to v, so there is
$\lambda \in \Lambda $
with
$s(\lambda )=x(n)$
and
$r(\lambda )=v$
. See also Lemma 3.1 in [Reference Mann, Raeburn and Sutherland22].
Remark 4.3. Note that the entry
$M_i(w,v)$
is just the multiplicity of the irreducible representation v in
$w\otimes \rho _i$
for
$i=1,\ldots ,k$
. If
$\rho _i^*=\rho _i$
, then the matrices
$M_i$
are symmetric since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu33.png?pub-status=live)
which implies
$M_i(w; v) = M_i(v;w)$
. Here
$\rho ^*_i$
denotes the dual representation defined by
$\rho _i^*(g)=\rho _i(g^{-1})^t$
and equal, in our case, to the conjugate representation
$\bar {\rho _i}$
.
For G finite, these matrices are finite, and the entries
$M_i(w,v)$
can be computed using the character table of G. For G infinite, the Clebsch–Gordan relations can be used to determine the numbers
$M_i(w,v)$
. Since the bijections
$\lambda _{ij}$
are, in general, not unique, the rank k graph
$\Lambda $
is not unique, as illustrated in some examples. It is an open question how the
$C^*$
-algebra
$C^*(\Lambda )$
depends, in general, on the factorization rules.
To relate the Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$
to a rank k graph
$\Lambda $
, we mimic the construction in [Reference Mann, Raeburn and Sutherland22]. For each edge
$e\in \Lambda ^{\varepsilon _i}$
, choose an isometric intertwiner
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu34.png?pub-status=live)
in such a way that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu35.png?pub-status=live)
for all
$\pi \in \Lambda ^0$
, that is, the edges in
$\Lambda ^{\varepsilon _i}$
ending at
$\pi $
give a specific decomposition of
$\mathcal {H}_\pi \otimes \mathcal {H}_i$
into irreducibles. When
$\dim Hom(s(e), r(e)\otimes \rho _i)\ge 2$
, we must choose a basis of isometric intertwiners with orthogonal ranges, so, in general,
$T_e$
is not unique. In fact, specific choices for the isometric intertwiners
$T_e$
determine the factorization rules in
$\Lambda $
and whether or not they satisfy the associativity condition.
Given
$e\in \Lambda ^{\varepsilon _i}$
and
$f\in \Lambda ^{\varepsilon _j}$
with
$r(f)=s(e)$
, we know how to multiply
$T_e\in Hom(s(e),r(e)\otimes \rho _i)$
with
$T_f\in Hom(s(f),r(f)\otimes \rho _j)$
in the algebra
$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$
, by viewing
$Hom(s(e),r(e)\otimes \rho _i)$
as a subspace of
$Hom(\rho ^n,\rho ^m)$
for some
$m,n$
, and similarly for
$Hom(s(f),r(f)\otimes \rho _j)$
. We choose edges
$e'\in \Lambda ^{\varepsilon _i}, f'\in \Lambda ^{\varepsilon _j}$
with
$s(f)=s(e'), r(e)=r(f'), r(e')=s(f')$
such that
$T_eT_f=T_{f'}T_{e'}$
, where
$T_{f'}\in Hom(s(f'),r(f')\otimes \rho _j)$
and
$T_{e'}\in Hom(s(e'),r(e')\otimes \rho _i)$
. This is possible since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu36.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu37.png?pub-status=live)
and
$\rho _i\otimes \rho _j\cong \rho _j\otimes \rho _i$
. In this case, we declare that
$ef=f'e'$
. Repeating this process, we obtain bijections
$\lambda _{ij}:\Lambda ^{\varepsilon _i}\times _{\Lambda ^0}\Lambda ^{\varepsilon _j}\to \Lambda ^{\varepsilon _j}\times _{\Lambda ^0}\Lambda ^{\varepsilon _i}$
. Assuming that the associativity conditions are satisfied, we obtain a k-graph
$\Lambda $
.
We write
$T_{ef}=T_eT_f=T_{f'}T_{e'}=T_{f'e'}$
. A finite path
$\lambda \in \Lambda ^n$
is a concatenation of edges and determines by composition a unique intertwiner
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu38.png?pub-status=live)
Moreover, the paths
$\lambda \in \Lambda ^n$
with
$r(\lambda )=\iota $
, the trivial representation, provide an explicit decomposition of
$\mathcal {H}^n=\mathcal {H}_1^{\otimes n_1}\otimes \cdots \otimes \mathcal {H}_k^{\otimes n_k}$
into irreducibles, and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu39.png?pub-status=live)
Proposition 4.4. Assuming that the choices of isometric intertwiners
$T_e$
, as above, determine a k-graph
$\Lambda $
, the family
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu40.png?pub-status=live)
is a basis for
$Hom(\rho ^n, \rho ^m)$
and each
$T_\lambda T^*_\mu $
is a partial isometry.
Proof. Each pair of paths
$\lambda , \mu $
with
$d(\lambda )=m, d(\mu )=n$
and
$r(\lambda )=r(\mu )=\iota $
determines a pair of irreducible summands
$T_\lambda (\mathcal {H}_{s(\lambda )}), T_\mu (\mathcal {H}_{s(\mu )})$
of
$\mathcal {H}^m$
and
$ \mathcal {H}^n$
, respectively. By Schur’s lemma, the space of intertwiners of these representations is trivial unless
$s(\lambda )=s(\mu )$
, in which case it is the one-dimensional space spanned by
$T_\lambda T_\mu ^*$
. It follows that any element of
$Hom(\rho ^n, \rho ^m)$
can be uniquely represented as a linear combination of elements
$T_\lambda T_\mu ^*$
, where
$s(\lambda )=s(\mu )$
. Since
$T_\mu $
is isometric,
$T_\mu ^*$
is a partial isometry with range
$\mathcal {H}_{s(\mu )}$
and hence
$T_\lambda T_\mu ^*$
is also a partial isometry whenever
$s(\lambda )=s(\mu )$
.
Theorem 4.5. Consider
$\rho _1,\ldots , \rho _k$
finite-dimensional unitary representations of a compact group G and let
$\Lambda $
be the k-colored graph with
$\Lambda ^0=R\subseteq \hat {G}$
and edges
$\Lambda ^{\varepsilon _i}$
determined by the incidence matrices
$M_i$
defined above. Assume that the factorization rules determined by the choices of
$T_e\in Hom(s(e),r(e)\otimes \rho _i)$
for all edges
$e\in \Lambda ^{\varepsilon _i}$
satisfy the associativity condition, so
$\Lambda $
becomes a rank k graph. If we consider
$P\in C^*(\Lambda )$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu41.png?pub-status=live)
where
$\iota $
is the trivial representation, then there is a
$*$
-isomorphism of the Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$
onto the corner
$PC^*(\Lambda )P$
.
Proof. Since
$C^*(\Lambda )$
is generated by linear combinations of
$S_\lambda S_\mu ^*$
with
$s(\lambda )=s(\mu )$
(see Lemma 3.1 in [Reference Kumjian, Pask, Raeburn and Renault18]), we first define the maps
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu42.png?pub-status=live)
where
$s(\lambda )=s(\mu )$
and
$r(\lambda )=r(\mu )=\iota $
. Since
$S_\lambda S_\mu ^*=PS_\lambda S_\mu ^*P$
, the maps
$\phi _{n,m}$
take values in
$PC^*(\Lambda )P$
. We claim that, for any
$r\in \mathbb {N}^k$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu43.png?pub-status=live)
This is because
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu44.png?pub-status=live)
so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu45.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu46.png?pub-status=live)
The maps
$\phi _{n,m}$
determine a map
$\phi : {}^0\mathcal {O}_{\rho _1,\ldots ,\rho _k}\to PC^*(\Lambda )P$
which is linear,
$*$
-preserving and multiplicative. Indeed,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu47.png?pub-status=live)
Consider now
$T_\lambda T_\mu ^*\in Hom(\rho ^n, \rho ^m),\;\; T_\nu T_\omega ^*\in Hom (\rho ^q,\rho ^p)$
with
$s(\lambda )=s(\mu ), s(\nu )=s(\omega ), r(\lambda )=r(\mu )=r(\nu )=r(\omega )=\iota $
. Since, for all
$n\in \mathbb {N}^k$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu48.png?pub-status=live)
we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu49.png?pub-status=live)
and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu50.png?pub-status=live)
On the other hand, from Lemma 3.1 in [Reference Kumjian, Pask, Raeburn and Renault18],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu51.png?pub-status=live)
and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu52.png?pub-status=live)
Since
$PS_\lambda S_\mu ^*P=\phi _{n,m}(T_\lambda T_\mu ^*)$
if
$r(\lambda )=r(\mu )=\iota $
and
$s(\lambda )=s(\mu )$
, it follows that
$\phi $
is surjective. Injectivity follows from the fact that
$\phi $
is equivariant for the gauge action.
Corollary 4.6. If the k-graph
$\Lambda $
associated to
$\rho _1,\ldots ,\rho _k$
is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, then the Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$
is simple and purely infinite, and is Morita equivalent with
$C^*(\Lambda )$
.
Proof. This follows from the fact that
$C^*(\Lambda )$
is simple and purely infinite and because
$PC^*(\Lambda )P$
is a full corner.
Remark 4.7. There is a groupoid
$\mathcal {G}_\Lambda $
associated to a row-finite rank k graph
$\Lambda $
with no sources (see [Reference Kumjian, Pask, Raeburn and Renault18]). By taking the pointed groupoid
$\mathcal {G}_\Lambda (\iota )$
, the reduction to the set of infinite paths with range
$\iota $
, under the same conditions as in Theorem 4.5, we get an isomorphism of the Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$
onto
$C^*(\mathcal {G}_\Lambda (\iota ))$
.
5 Examples
Example 5.1. Let
$G=S_3$
be the symmetric group with
$\hat {G}=\{\iota , \epsilon , \sigma \}$
and character table
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_tab1.png?pub-status=live)
Here
$\iota $
denotes the trivial representation,
$\epsilon $
is the sign representation and
$\sigma $
is an irreducible
$2$
-dimensional representation, for example,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu53.png?pub-status=live)
By choosing
$\rho _1=\sigma $
on
$\mathcal {H}_1=\mathbb {C}^2$
and
$\rho _2=\iota +\sigma $
on
$\mathcal {H}_2=\mathbb {C}^3$
, we get a product system
$\mathcal {E}\to \mathbb {N}^2$
and an action of
$S_3$
on
$\mathcal {O}(\mathcal {E})\cong \mathcal O_2\otimes \mathcal O_3$
with fixed point algebra
$\mathcal {O}(\mathcal {E})^{S_3}\cong \mathcal {O}_{\rho _1,\rho _2}$
isomorphic to a corner of the
$C^*$
-algebra of a rank two graph
$\Lambda $
. The set of vertices is
$\Lambda ^0=\{\iota ,\epsilon , \sigma \}$
and the edges are given by the incidence matrices
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu54.png?pub-status=live)
This is because
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu55.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu56.png?pub-status=live)
We label the blue (solid) edges by
$e_1,\ldots , e_5$
and the red (dashed) edges by
$f_1,\ldots ,f_8$
as in the figure below.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu57.png?pub-status=live)
The isometric intertwiners are
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu58.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu59.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu60.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu61.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu62.png?pub-status=live)
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu63.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu64.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu65.png?pub-status=live)
Here
$I_\pi $
is the identity of
$\mathcal {H}_\pi $
for
$\pi \in \hat {G}$
and
$I_i$
is the identity of
$\mathcal {H}_i$
for
$ i=1,2$
. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu66.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu67.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu68.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu69.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu70.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu71.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu72.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu73.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu74.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu75.png?pub-status=live)
a possible choice of commuting squares is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu76.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu77.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu78.png?pub-status=live)
This data is enough to determine a rank two graph
$\Lambda $
associated to
$\rho _1, \rho _2$
. But this is not the only choice, since, for example, we could have taken
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu79.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu80.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu81.png?pub-status=live)
which determines a different
$2$
-graph.
A direct analysis using the definitions shows that, in each case, the
$2$
-graph
$\Lambda $
is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance. It follows that
$C^*(\Lambda )$
is simple and purely infinite and the Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\rho _2}$
is Morita equivalent with
$C^*(\Lambda )$
.
The K-theory of
$C^*(\Lambda )$
can be computed using Proposition 3.16 in [Reference Evans11] and it does not depend on the choice of factorization rules. We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu82.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu83.png?pub-status=live)
In particular,
$\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}_3$
.
On the other hand, since
$\rho _1, \rho _2$
are faithful, both Doplicher–Roberts algebras
$\mathcal {O}_{\rho _1}, \mathcal {O}_{\rho _2}$
are simple and purely infinite with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu84.png?pub-status=live)
so
$\mathcal {O}_{\rho _1,\rho _2}\ncong \mathcal {O}_{\rho _1}\otimes \mathcal {O}_{\rho _2}$
.
Example 5.2. With
$G=S_3$
and
$\rho _1=2\iota , \rho _2=\iota +\epsilon $
, then
$R=\{\iota , \epsilon \}$
, so
$\Lambda $
has two vertices and incidence matrices
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu85.png?pub-status=live)
which give
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu86.png?pub-status=live)
Again, a corresponding choice of isometric intertwiners determines some factorization rules, for example,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu87.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu88.png?pub-status=live)
Even though
$\rho _1, \rho _2$
are not faithful, the obtained
$2$
-graph is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, so
$\mathcal {O}_{\rho _1,\rho _2}$
is simple and purely infinite with trivial K-theory. In particular,
$\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}_2$
.
Note that, since
$\rho _1, \rho _2$
have kernel
$N=\langle (123)\rangle \cong \mathbb {Z}/3\mathbb {Z}$
, we could replace G by
$G/N\cong \mathbb {Z}/2\mathbb {Z}$
and consider
$\rho _1,\rho _2$
as representations of
$\mathbb {Z}/2\mathbb {Z}$
.
Example 5.3. Consider
$G=\mathbb {Z}/2\mathbb {Z}=\{0,1\}$
with
$\hat {G}=\{\iota ,\chi \}$
and character table
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_tab2.png?pub-status=live)
Choose the
$2$
-dimensional representations
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu89.png?pub-status=live)
which determine a product system
$\mathcal {E}$
such that
$\mathcal {O}(\mathcal {E})\cong \mathcal {O}_2\otimes \mathcal {O}_2\otimes \mathcal {O}_2$
and a Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\rho _2,\rho _3}\cong \mathcal {O}(\mathcal {E})^{\mathbb {Z}/2\mathbb {Z}}$
.
An easy computation shows that the incidence matrices of the blue (solid), red (dashed) and green (dotted) graphs are
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu90.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu91.png?pub-status=live)
With labels as in the figure, we choose the following factorization rules.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu92.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu93.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu94.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu95.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu96.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu97.png?pub-status=live)
A tedious verification shows that all the following paths are well defined.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu98.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu99.png?pub-status=live)
so the associativity property is satisfied and we get a rank three graph
$\Lambda $
with two vertices. It is not difficult to check that
$\Lambda $
is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, so
$C^*(\Lambda )$
is simple and purely infinite.
Since
$\partial _1=[I-M_1^t\; I-M_2^t\; I-M_3^t]:\mathbb {Z}^6\to \mathbb {Z}^2$
is surjective, using Corollary 3.18 in [Reference Evans11], we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu100.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu101.png?pub-status=live)
and, in particular,
$\mathcal {O}_{\rho _1,\rho _2,\rho _3}\cong \mathcal {O}_2$
.
Example 5.4. Let
$G=\mathbb {T}$
. We have
$\hat {G}=\{\chi _k:k\in \mathbb {Z}\}$
, where
$\chi _k(z)=z^k$
and
$\chi _k\otimes \chi _\ell =\chi _{k+\ell }$
. The faithful representations
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu102.png?pub-status=live)
of
$\mathbb {T}$
determine a product system
$\mathcal {E}$
with
$\mathcal {O}(\mathcal {E})\cong \mathcal {O}_2\otimes \mathcal {O}_2$
and a Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}(\mathcal {E})^{\mathbb {T}}$
isomorphic to a corner in the
$C^*$
-algebra of a rank
$2$
graph
$\Lambda $
with
$\Lambda ^0=\hat {G}$
and infinite incidence matrices, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu103.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu104.png?pub-status=live)
The skeleton of
$\Lambda $
looks like
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu105.png?pub-status=live)
and this
$2$
-graph is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance, so
$C^*(\Lambda )$
is simple and purely infinite.
Example 5.5. Let
$G=SU(2)$
. It is known (see page 84 in [Reference Bröcker and tom Dieck2]) that the elements in
$\hat {G}$
are labeled by
$V_n$
for
$n\ge 0$
, where
$V_0=\iota $
is the trivial representation on
$\mathbb {C}$
,
$V_1$
is the standard representation of
$SU(2)$
on
$\mathbb {C}^2$
, and, for
$n\ge 2$
,
$V_n=S^nV_1$
, the
$n\, $
th symmetric power. In fact,
$\dim V_n=n+1$
and
$V_n$
can be taken as the representation of
$SU(2)$
on the space of homogeneous polynomials p of degree n in variables
$z_1,z_2$
, where, for
$ g=\big [\begin {smallmatrix}a&b\\c&d\end {smallmatrix}\big ]\in SU(2)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu106.png?pub-status=live)
The irreducible representations
$V_n$
satisfy the Clebsch–Gordan formula
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu107.png?pub-status=live)
If we choose
$\rho _1=V_1, \rho _2=V_2$
, then we get a product system
$\mathcal {E}$
with
$\mathcal {O}(\mathcal {E})\cong \mathcal {O}_2\otimes \mathcal {O}_3$
and a Doplicher–Roberts algebra
$\mathcal {O}_{\rho _1,\rho _2}\cong \mathcal {O}(\mathcal {E})^{SU(2)}$
isomorphic to a corner in the
$C^*$
-algebra of a rank two graph with
$\Lambda ^0=\hat {G}$
and edges given by the matrices
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu108.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu109.png?pub-status=live)
The skeleton looks like
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221111022344575-0372:S1446788721000392:S1446788721000392_eqnu110.png?pub-status=live)
and this
$2$
-graph is cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an entrance; in particular,
$\mathcal {O}_{\rho _1,\rho _2}$
is simple and purely infinite.