Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T14:18:37.815Z Has data issue: false hasContentIssue false

Scyllarus arctus (Crustacea: Decapoda: Scyllaridae) final stage phyllosoma identified by DNA analysis, with morphological description

Published online by Cambridge University Press:  20 April 2010

Ferran Palero*
Affiliation:
Evolutionary Genetics, Institute of Science and Technology Austria (ISTA), Am Campus 1, A–3400 Klosterneuburg, Austria Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Catalonia, Spain
Guillermo Guerao
Affiliation:
IRTA, Unitat de Cultius Experimentals, Sant Carles de la Ràpita, Tarragona, Catalonia, Spain
Paul F. Clark
Affiliation:
Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Pere Abelló
Affiliation:
Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Catalonia, Spain
*
Correspondence should be addressed to: F. Palero, Evolutionary Genetics, Institute of Science and Technology Austria (ISTA), Am Campus 1, A–3400 Klosterneuburg, Austria email: fpalero@ist.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Advanced stages of Scyllarus phyllosoma larvae were collected by demersal trawling during fishery research surveys in the western Mediterranean Sea in 2003–2005. Nucleotide sequence analysis of the mitochondrial 16S rDNA gene allowed the final-stage phyllosoma of Scyllarus arctus to be identified among these larvae. Its morphology is described and illustrated. This constitutes the second complete description of a Scyllaridae phyllosoma with its specific identity being validated by molecular techniques (the first was S. pygmaeus). These results also solved a long lasting taxonomic anomaly of several species assigned to the ancient genus Phyllosoma Leach, 1814. Detailed examination indicated that the final-stage phyllosoma of S. arctus shows closer affinities with the American scyllarid Scyllarus depressus or with the Australian Scyllarus sp. b (sensu Phillips et al., 1981) than to its sympatric species S. pygmaeus.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

INTRODUCTION

Identification of zooplankton is traditionally based on morphological characterization which is in some cases almost impossible (Evans et al., Reference Evans, Wortley and Mann2007; Litaker et al., Reference Litaker, Vandersea, Kibler, Reece, Stokes, Lutzoni, Yonish, West, Black and Tester2007; Clark, Reference Clark, Martin, Crandall and Felder2009). A valuable resource to contribute to precise species identification, especially concerning meroplankton, has been provided over the past decades by the development of new tools based on molecular analysis (DNA barcoding: Hebert et al., Reference Hebert, Cywinska, Ball and DeWaard2003; John et al., Reference John, Medlin and Groben2005). One obvious advantage of DNA barcoding comes from the fact that genetic markers do not change during the development of the organism through its life stages. Therefore, molecular based identification is most useful when there are no obvious means to match adults with immature/juvenile specimens (Pegg et al., Reference Pegg, Sinclair, Briskey and Aspden2006; Ahrens et al., Reference Ahrens, Monaghan and Vogler2007) or larval stages. Furthermore, the analysis of COI (cytochrome oxidase-I) or 16S rRNA genes using universal primers allows the molecular characterization of an array of specimens that could belong to various phylogenetically distant taxa (Vences et al., Reference Vences, Thomas, van der Meijden, Chiari and Vieites2005). Nevertheless, despite its role in identifying samples to the species level and being an important aid for taxonomic workflow, it should be stressed that DNA barcoding is no replacement for comprehensive taxonomic analysis and complete morphological descriptions (Hajibabaei et al., Reference Hajibabaei, Singer, Hebert and Hickey2007; Wheeler, Reference Wheeler2008).

The Scyllaridae Latreille, Reference Latreille1825, popularly known as slipper lobsters, is a group of decapod crustaceans widespread in tropical and temperate waters characterized by their unique plate-like antennae and the presence of a specialized larval phase called phyllosoma (Holthuis, Reference Holthuis1991; Scholtz & Richter, Reference Scholtz and Richter1995). Four subfamilies are recognized, containing ~80 species: Ibacinae, Arctidinae, Scyllarinae and Theninae (Holthuis, Reference Holthuis1985, Reference Holthuis1991, Reference Holthuis2002; Webber & Booth, Reference Webber, Booth, Lavalli and Spanier2007). Scyllarinae are the most diverse group of slipper lobsters, with more than 40 species assigned to 14 genera, namely Acantharctus, Antarctus, Antipodarctus, Bathyarctus, Biarctus, Chelarctus, Crenarctus, Eduarctus, Galearctus, Gibbularctus, Petrarctus, Remiarctus, Scammarctus (all Holthuis, Reference Holthuis2002) and Scyllarus Fabricius, Reference Fabricius1775 (Holthuis, Reference Holthuis2002). The phyllosoma larvae of the Scyllarinae are difficult to separate into species due to their similarity, especially the early stages (Lindley et al., Reference Lindley, Hernandez, Tejera and Correia2004; Booth et al., Reference Booth, Webber, Sekiguchi and Coutures2005). Most scyllarinid larvae collected, even those recently described, remain unidentified below the generic level (McWilliam et al., Reference McWilliam, Phillips and Kelly1995; Coutures & Webber, Reference Coutures and Webber2005). Nevertheless, the correct identification of phyllosoma larvae in plankton samples is essential to recognize and understand the spatiotemporal distributions, behavioural ecology, population dynamics and reproductive strategies of the different species and DNA markers can facilitate this task (Chow et al., Reference Chow, Suzuki, Imai and Yoshimura2006a, Reference Chow, Yamada and Suzukib; Shirai et al., Reference Shirai, Yoshimura, Konishi and Kobayashi2006; Suzuki et al., Reference Suzuki, Murakami, Takeyama and Chow2006).

Two congeneric species, Scyllarus arctus Linnaeus, Reference Linnaeus1758 and S. pygmaeus Bate, Reference Bate1888, are commonly found in Mediterranean and north-eastern Atlantic waters (García-Raso, Reference García-Raso1982; Holthuis, Reference Holthuis1991). Adult specimens from these two closely related species can be readily distinguished by precise morphological characters such as the shape of a tubercle on the last thoracic sternite, the pleura of pleonal somites or the shape of the thoracic sternum (Zariquiey Álvarez, Reference Zariquiey Álvarez1968; Holthuis, Reference Holthuis1987), as well as by size, with total body length being usually between 89 cm for S. arctus and about 45 cm for S. pygmaeus (Mura et al., Reference Mura, Cau and Deiana1984). However, phyllosoma larvae cannot be generally assigned to a particular species using morphological traits, since the characters used to distinguish between Scyllarus species are only expressed during more advanced nisto and adult stages (Lindley et al., Reference Lindley, Hernandez, Tejera and Correia2004; Palero et al., Reference Palero, Guerao, Clark and Abelló2009a). It is not surprising to note that all wild-caught European Scyllarus phyllosoma larvae found in the literature have consistently been assigned to S. arctus, since this is apparently the most common species. However, S. pygmaeus is also a relatively common species in Mediterranean waters (Forest & Holthuis, Reference Forest and Holthuis1960; Abelló et al., Reference Abelló, Valladares and Castellón1988; Pessani & Mura, Reference Pessani, Mura, Lavalli and Spanier2007), even though it is collected less often than S. arctus.

Accurate identification usually requires rearing (Robertson, Reference Robertson1971; Ito & Lucas, Reference Ito and Lucas1990), but the recent development of the molecular phylogeny of the Achelata (slipper and spiny lobsters) from Mediterranean and eastern Atlantic waters provides highly valuable species-specific markers for the correct identification of phyllosoma larvae (Palero et al., Reference Palero, Crandall, Abelló, Macpherson and Pascual2009b). Final-stage and a sub-final stage phyllosoma belonging to Scyllarus were collected in the western Mediterranean Sea during fishery research surveys in 2003–2005. Their DNA was analysed and this material was subsequently identified as several final stage phyllosoma of Scyllarus arctus and S. pygmaeus and a sub-final phyllosoma of S. pygmaeus. This constitutes the second molecular identification of a phyllosoma stage for Scyllaridae species (see Palero et al., Reference Palero, Guerao and Abelló2008) and helped resolve the synonymy of several species referred to the ancient genus Phyllosoma Leach, Reference Leach and Brewster1814.

MATERIALS AND METHODS

Several final stage phyllosoma larvae identified as belonging to the genus Scyllarus were caught by demersal trawling in the western Mediterranean (Table 1). Each individual was preserved in 100% ethanol. DNA information was also obtained from various scyllarid species found in Mediterranean and Atlantic waters namely Acantharctus posteli, Scyllarus arctus, S. caparti, S. pygmaeus, S. subarctus, Scyllarides latus, S. herklotsii and S. nodifer (Palero et al., Reference Palero, Crandall, Abelló, Macpherson and Pascual2009b). The Palinuridae species Palinurus elephas, P. mauritanicus and P. charlestoni were used as outgroup.

Table 1. Stations where final-stage phyllosoma larvae of Scyllarus were found (* ICM CODE assignation pending).

Total genomic DNA extraction was performed using the QIAamp DNA Mini Kit (QIAGEN Inc). A region of 440–450bp was amplified using universal primers for the mitochondrial 16S rRNA gene (16Sar 5′–CGC CTG TTT ATC AAA AAC AT–3′ and 16Sbr 5′–CCG GTC TGA ACT CAG ATC ACG T–3′; Palumbi, Reference Palumbi, Hillis, Moritz and Mable1996). Amplification was carried out with 30 ng of genomic DNA in a reaction containing 1U of Taq polymerase (Amersham), 1X buffer (Amersham), 0.2 µM of each primer and 0.12 mM dNTPs. The PCR thermal profile used was 94°C for 4 minutes for initial denaturation, followed by 30 cycles of 94°C for 30 seconds, 54°C for 30 seconds, 72°C for 30 seconds, and a final extension at 72°C for 4 minutes. Amplified PCR products were purified with QIA-Quick PCR Purification Kit (QIAGEN Inc) prior to direct sequencing of the product. The sequences were obtained using the Big-Dye Ready-Reaction kit v3.1 (Applied Biosystems) on an ABI Prism 3770 automated sequencer from the Scientific and Technical Services of the University of Barcelona.

A neighbour-joining phylogenetic tree (NJ) based on Kimura's 2-parameter model (K2P) and associated bootstrap support values were obtained using MEGA version 3.1 (Kumar et al., Reference Kumar, Tamura and Nei2004).

A binocular microscope equipped with an ocular micrometer was used for dissections and measurements of phyllosomata. The following measurements were taken: total length (TL) from the anterior margin of the cephalic shield between the eyes to the posterior margin of the telson; cephalic length (CL) from the anterior to the posterior margin of the cephalic shield; cephalic width (CW) measured at the widest part of the cephalic shield; thorax width (TW) measured at its widest point; eye length (EL) from the base of the eyestalk to the tip of the eyes; antennular length (A1L) from the insertion point to the tip of the inner ramus; total antennal length (A2L) from the insertion point to the tip of the inner ramus; pleon length (PL) from the anterior margin of the pleon to the posterior margin of the telson. The larvae are described using the basic malacostracan somite plan from anterior to posterior and appendage segments are described from proximal to distal, endopod then exopod (Clark et al., Reference Clark, Calazans and Pohle1998).

The two studied Mediterranean specimens of S. arctus final phyllosoma stage and the new S. pygmaeus samples have been deposited in the Biological Collections of Reference of the Institut de Ciències del Mar (CSIC) in Barcelona (Table 1).

RESULTS

DNA analysis

The length of the aligned dataset for the 16S rDNA gene was 435bp and the sequences have been deposited in GeneBank with Accession Numbers GQ922070–75. The 16S rDNA data from the studied larvae were analysed together with those obtained in recent phylogenetic work on Achelata lobsters (Palero et al., Reference Palero, Crandall, Abelló, Macpherson and Pascual2009b). The phylogenetic tree showed the actual identity of the final-stage phyllosoma larvae (Figure 1), with the clade formed by the studied phyllosoma specimens collected at Stations M04L060 and M04L082 and the S. arctus adult specimen presenting a 100 bootstrap support. The identity of the S. pygmaeus-like final-stage phyllosoma larvae, was confirmed using molecular data, with the studied phyllosoma specimens collected at Stations M03L043, M03L093, M03L095 and M05L041 and the S. pygmaeus adult specimen presenting a 100 bootstrap support. The distance (K2P) among the phyllosoma specimens collected at Stations M04L060 and M04L082 and the adult Scyllarus arctus (0.000 ± 0.000) was much smaller than those between the larvae and either adult specimens from Scyllarus pygmaeus (0.110 ± 0.018) or Acantharctus posteli (0.095 ± 0.016). Therefore, the phyllosoma specimens collected at Stations M04L060 and M04L082 belong to Scyllarus arctus. Since the final-stage phyllosoma larva of S. pygmaeus has been recently described (Palero et al., Reference Palero, Guerao and Abelló2008), only the S. arctus phyllosoma specimens are described in the present study.

Fig. 1. Neighbour-joining phylogenetic tree estimated from the partial mitochondrial 16S rDNA sequence data, showing the position of the phyllosoma specimens genetically analysed in the present study.

Morphological description

DESCRIPTION

Individuals examined: ICMD68/2007 and ICMD69/2007 (Table 1).

Dimensions. TL = 2.00–2.20 cm; CL = 1.13–1.25 cm; CW = 1.30–1.50 cm; EL = 0.43–0.52 cm; A1L = 0.31–0.37 cm; A2L = 0.36–0.40 cm; TW = 0.66–0.78 cm; PL = 0.60–0.70 cm.

Cephalic shield (Figure 3A). Subrectangular, 1.15–1.20 times wider than long, and 1.70–1.80 times wider than thorax; eye slighly longer than antennule and antenna.

Antennule (Figure 3A). Biramous, peduncle 3-segmented; inner ramus unsegmented with 2–3 setae, slightly longer than outer; outer ramus unsegmented with 13–15 rows of sensory setae.

Antenna (Figure 3A). Unsegmented and unarmed, similar in length to antennules; lateral process directed anteriorly.

Mandibles (Figure 4A, B). Flattened, placed between labrum and paragnaths; incisor process and medial gnathal edge with several teeth, which differ in number and morphology (23–24 long and thin teeth on left mandible and 12–13 short and strong teeth on right mandible); molar process crowned by many denticules and papillae.

Maxillule (Figure 4C). Uniramous; coxal endite with 9 setae; basial endite with 3 strong cuspidate setae and 6 subterminal setae; palp (endopod) absent.

Maxilla (Figures 3A, 4D). Endites and endopod not differentiated, with 0–4 minute setae; scaphognathite without setae, flattened and considerably expanded anteriorly and posteriorly.

First maxilliped (Figure 4D). Unsegmented and unarmed; bilobed rudimentary bud.

Second maxilliped (Figures 3A, 4E). Protopod 2-segmented with one minute seta on distal segment (basis); endopod 4-segmented with 0, 0, 11 and 5 setae, ischio-merus fused to basis; unarmed exopod bud present.

Third maxilliped (Figure 3A). Protopod 2-segmented, with ventral coxal spine; endopod 4-segmented, ischio-merus fused to basis, distal part of propodus and dactylus densely setose; very minute exopod bud present.

Pereiopods (Figures 3, 4F, G). Pereiopods 1–4 biramous, with coxal and subexopodal spines, endopod four-segmented, ischio-merus fused to basis and with 2 distal spines, one distal spine on carpus; exopods with flagellae distally with 23–24, 24, 19–20 and 17–18 annulations, respectively, each annulation bears a pair of setae; pereiopod 5 uniramous, 5-segmented, not reaching posterior margin of telson, with ventral coxal spine, 2 distal minute spines on ischio-merus and one or no distal spine on carpus.

Thorax (Figure 3A, C). Dorsal thoracic spines present above pereiopods 1–4.

Gills (Figure 3C). Full complement of gill buds present: third maxilliped and pereiopod 1 with one pleurobranch, one arthrobranch and two podobranchs; pereiopods 2–4 with two pleurobranchs, one arthrobranch, two podobranchs; pereiopod 5 with one pleurobranch.

Pleon (Figures 3A, D, 4H). Segmented, with 6 somites; somites 2–5 with a pair of pleopods; pleopods biramous, unsegmented and unarmed (Figure 4H); biramous uropods not outreaching posterior margin of telson; telson rounded posteriorly with strong postero-lateral processes that reach beyond the posterior margin (Figure 3D).

SYSTEMATICS
Order DECAPODA Latreille, Reference Latreille1802
Suborder PLEOCYEMATA Burkenroad, Reference Burkenroad1963
Infraorder ACHELATA Scholtz & Richter, 1995
Family SCYLLARIDAE Latreille, Reference Latreille1825
Genus Scyllarus Fabricius, 1775
Scyllarus arctus (Linnaeus, Reference Linnaeus1758)

Fig. 2. Scyllarus arctus. Final-stage phyllosoma, dorsal view. Scale bar = 1 cm.

Fig. 3. Scyllarus arctus. Final-stage phyllosoma. (A) Ventral surface; (B) detail of the pereiopod 5; (C) left side of thorax, dorsal view; (D) telson, dorsal view. Scale bar A = 5 mm; C = 2 mm; D = 1 mm.

Fig. 4. Scyllarus arctus. Final-stage phyllosoma. (A) Right mandible; (B) left mandible; (C) maxillule; (D) maxilla and first maxilliped; (E) second maxilliped; (F) dactylus of first pereiopod; (G) dactylus of fourth pereiopod; (H) pleopod. Scale bar of A–D and H = 500 µm; E = 1 mm; F and G = 200 µm.

Astacus arctus Pennant, Reference Pennant1777: 14.

Cancer (Astacus) ursus minor Herbst, Reference Herbst1793: 83–84, table XXX, figure 3.

Scyllarus ursus minor Bosc, Reference Bosc1802: 20.

Scyllarus tridentatus Leach, Reference Leach and Brewster1814: 397.

Scyllarus cicada Risso, Reference Risso1816: 61–62; Hope Reference Hope1851: 14; Holthuis, Reference Holthuis1978: 56.

Scyllarus cicada var. A Risso, Reference Risso1816: 62; Holthuis, Reference Holthuis1978: 56.

Scyllarus cicada Risso, Reference Risso1827: 43; Roux, Reference Roux1828: unnumbered; Holthuis, Reference Holthuis1978: 56.

Scyllarus cicada var. I Risso, Reference Risso1827: 43; Holthuis, Reference Holthuis1978: 56.

Scyllarus Arctus var. cicada Risso Ms. in Holthuis, Reference Holthuis1978: 56.

Scyllarus ursus minor Bosc, Reference Bosc1830: 54; Roux, Reference Roux1828: unnumbered.

Phyllosoma Lukis, Reference Lukis1835a: 459–462.

Phyllosòma sarniénse Lukis, Reference Lukis1835b: 685; Lukis, Reference Lukis1836: 48–49.

Arctus arctus de Haan, Reference de Haan and von Siebold1849: 238.

Arctus ursus minor Hope, Reference Hope1851: 14.

Arctus urus Dana, Reference Dana1852a: 14, Reference Dana1852b: 124, Reference Dana1853: 516; Bate, Reference Bate1888: 66.

Nisto asper Sarato, Reference Sarato1885: 3; Bouvier, Reference Bouvier1913: 1647; Reference Bouvier1915a: 289–290; Reference Bouvier1915b: 50; Reference Bouvier1917: 108–114, pl. 10, figures 1–2; Stephensen, Reference Stephensen1923: 69, 74, figure 24; Demirhindi, Reference Demirhindi1959: 52; Holthuis, Reference Holthuis1991: 218.

Arctus arctus Bouvier, Reference Bouvier1905: 479.

Arctus crenulatus Bouvier, Reference Bouvier1905: 480; Scyllarus (Arctus) crenulatus Bouvier, Reference Bouvier1915a: 290.

Scyllarus Arctus var. lutea Risso Ms. in Holthuis, Reference Holthuis1978: 56.

Yalomus depressus Rafinesque MS in Holthuis, Reference Holthuis1985: 141–142, 144–145.

Non-Chrysoma mediterraneum Risso, Reference Risso1827: 88–89, pl. 3, figure 9, 1844: 96; Risso Ms. in Holthuis, Reference Holthuis1978: 56 = Scyllarus pygmaeus Bate, Reference Bate1888.

Non-Chrysoma Mediterraneum Roux, Reference Roux1830: unnumbered, pl. 25 = Scyllarus pygmaeus Bate, Reference Bate1888.

Non-Phyllosoma Mediterraneum Costa & Costa, Reference Costa and Costa1840: 5; Hope, Reference Hope1851: 20 = Scyllarus pygmaeus Bate, Reference Bate1888.

Non-Phyllosoma parthenopaeum Costa & Costa, Reference Costa and Costa1840: 5–8, table XI, figure 5a–c, d = Scyllarus pygmaeus Bate, Reference Bate1888.

Non-Phyllosoma Parthenopaeum Hope, Reference Hope1851: 20 = Scyllarus pygmaeus Bate, Reference Bate1888.

Non-Nisto laevis Sarato, Reference Sarato1885: 3; Bouvier, Reference Bouvier1913: 1647; Reference Bouvier1915a: 289–290; Reference Bouvier1915b: 50; Reference Bouvier1917: 108–114, pl. 11, figures 1–2; Stephensen, Reference Stephensen1923: 69, 74; Demirhindi, Reference Demirhindi1959: 52; García-Raso, Reference García-Raso1982: 74–76; Holthuis, Reference Holthuis1991: 218 = Scyllarus pygmaeus Bate, Reference Bate1888.

REMARKS

Lukis' corrections to the description of Phyllosòma sarniénse, despite being dated 22 October 1835, were actually published late in 1836 in Volume IX of the Magazine of Natural History.

DISCUSSION

The identification of the phyllosoma specimens collected as belonging to both Scyllarus pygmaeus and S. arctus has been determined using DNA barcoding techniques by comparing larval DNA sequences with sequences from every species of Scyllaridae present in Mediterranean or adjacent eastern Atlantic waters i.e. Scyllarides latus, Acantharctus posteli, Scyllarus arctus, S. caparti and S. pygmaeus (García-Raso, Reference García-Raso1982; Pessani & Mura, Reference Pessani, Mura, Lavalli and Spanier2007; Palero et al., Reference Palero, Crandall, Abelló, Macpherson and Pascual2009b) and using several Palinurus species as outgroup. The S. arctus phyllosoma larvae studied in the present work are stage X larvae, with the presence of a complete set of gills (Webber & Booth, Reference Webber and Booth2001). The key characteristics, useful for diagnosis, of the final stage phyllosoma larva of S. arctus concern the shape of the cephalic shield, antennulae about the same length as the antennae, the presence of a small exopod bud on the third maxilliped, the presence of strong dorsal thoracic spines and the presence of telson spines. Despite many specimens having been previously described as belonging to S. arctus, this is the first time the identity of the phyllosoma larva of S. arctus has been confirmed using molecular techniques and therefore the larva has been described following present day standards. Moreover, thanks to the identification of the phyllosoma larva of both S. pygmaeus and S. arctus, together with a thorough literature review, the authors have been able to identify the species previously assigned to the genus Phyllosoma currently synonymized with S. arctus (Holthuis, Reference Holthuis1991).

Antoine Risso claimed to have discovered Chrysoma mediterraneum in 1815, although he did not publish a description until his Histoire Naturelle de l'Europe Méridionale in 1827 (Risso, Reference Risso1827, Reference Risso1844). Most of Risso's descriptions are good enough for proper specific identification. Thus, the Chrysoma mediterraneum figured by him could recently be assigned to S. pygmaeus, given the shape of the cephalic shield (Risso, Reference Risso1827; Palero et al., Reference Palero, Guerao and Abelló2008). Interestingly, two more Phyllosoma species were described from Mediterranean and nearby Atlantic waters: Phyllosòma sarniénse captured in 1835 by Lukis, near the coast of Guernsey, Channel Islands (Lukis, Reference Lukis1835b 1836), and Phyllosoma parthenopaeum Costa & Costa, Reference Costa and Costa1840 captured near Naples, Italy. According to the results obtained in the present study, Phyllosòma sarniénse can now be identified as the final-stage phyllosoma of S. arctus, while Phyllosoma parthenopaeum Costa & Costa, Reference Costa and Costa1840, which was previously thought to be a phyllosoma stage of S. arctus, actually represents a sub-final stage of S. pygmaeus. Together with the results obtained in a previous study (Palero et al., Reference Palero, Guerao, Clark and Abelló2009a), the authors intend to submit an application to the International Commission for Zoological Nomenclature to suppress the names Nisto laevis Sarato, Reference Sarato1885, Chrysoma mediterraneum Risso, Reference Risso1827 and Phyllosoma parthenopaeum Costa & Costa, Reference Costa and Costa1840 whenever they are considered a synonym of S. arctus, under Article 23.9.3 of the International Code of Zoological Nomenclature (ICZN).

The main characters that can be used to distinguish between the final-stage phyllosoma larvae of S. pygmaeus and S. arctus are:

  1. (1) the overall smaller size of S. arctus larvae. Despite the larger size of S. arctus adults, S. pygmaeus final-stage larvae were consistently larger than final-stage larvae of S. arctus (average of TL = 2.52, CL = 1.44 and CW= 1.91 in S. pygmaeus; TL= 2.14, CL= 1.19 and CW= 1.42 in S. arctus);

  2. (2) the shape of the cephalic shield, being much narrower in S. arctus than in S. pygmaeus. The TL/CW ratio is larger in S. arctus (> 1.4) than in S. pygmaeus (< 1.4);

  3. (3) the lateral process of the antenna of S. arctus is directed anteriorly, while in S. pygmaeus is directed laterally;

  4. (4) coxal endites of the maxillule with 9 setae in S. arctus and 10 setae in S. pygmaeus;

  5. (5) second maxilliped five-segmented, with 0, 1, 2, 10 and 6 setae in S. pygmaeus and with 0, 1, 0, 11 and 5 setae in S. arctus; and

  6. (6) S. arctus final-stage phyllosoma shows a very minute exopod bud on the third maxilliped, while no exopod bud was observed in S. pygmaeus larvae.

Comparison with scyllarinid larvae found in previous literature

The specific identity of the scyllarinid phyllosoma larvae has been confirmed only for a few species in the world (Webber & Booth, Reference Webber and Booth2001; Holthuis, Reference Holthuis2002), which makes any attempt to carry out a systematic comparative study almost impracticable. Nevertheless, the final-stage phyllosomata of both S. arctus and S. pygmaeus are larger than most Scyllarinae species described to date (Eduarctus martensii: Phillips & McWilliam, Reference Phillips and McWilliam1986; Crenarctus bicuspidatus: Inoue & Sekiguchi, Reference Inoue and Sekiguchi2006). The phyllosomata of both S. arctus and S. pygmaeus can be easily distinguished from other species of scyllarinid lobster that have distinctly different morphologies and never develop elongate telson spines (Scyllarus americanus: Robertson, Reference Robertson1968; Petrarctus demani: Ito & Lucas, Reference Ito and Lucas1990). Only a minority of scyllarinid phyllosomata, including the Scyllarus phyllosomata described in this study, have a pair of spines outreaching the posterior margin of the telson (and uropods) in the final stage (Webber & Booth, Reference Webber and Booth2001; Palero et al., Reference Palero, Guerao and Abelló2008). Within this group of larvae, S. arctus phyllosomata can be distinguished from other S. pygmaeus-like larvae found in the Juan Fernandez Islands (Acantharctus delfini Johnson, Reference Johnson1971), Western and South-Eastern Australia (Crenarctus bicuspidatus sensu Phillips et al., Reference Phillips, Brown, Rimmer and Braine1981) and Japan (Chelarctus cultrifer sensu Higa & Shokita, Reference Higa and Shokita2004) using differences in the shape of the cephalic shield. However, the authors could not find any morphological trait that would distinguish the phyllosoma larva of S. arctus from those larvae attributed to S. depressus (Robertson, Reference Robertson1971) and Scyllarus sp. b (sensu Phillips et al., Reference Phillips, Brown, Rimmer and Braine1981) from the South-Eastern Indian Ocean.

The present study, together with Palero et al. (Reference Palero, Guerao and Abelló2008) showed the real identity of the phyllosoma larvae of S. arctus and S. pygmaeus and allowed a comparison of scyllarinid phyllosomata. From these results, the present generic classification of scyllarinid lobsters based on adult characters does not match with those characters found in the larval stages (Holthuis, Reference Holthuis2002). Strikingly similar larvae have been described as belonging to different genera (e.g. Acantharctus delfini, Crenarctus bicuspidatus and Chelarctus cultrifer), while species within a particular genus may show clearly distinct larvae (e.g. Scyllarus arctus and S. americanus). Work is in progress to develop a molecular phylogenetic study including every known Scyllaridae genus, which will provide a new set of molecular markers to infer larval identity through DNA barcoding (Palero et al., Reference Palero, Pascual, Crandall, Abelló, Macpherson, Lavalli and Spanier2009c). Finally, the definitive identification of the scyllarinid larvae will stimulate new research on the life history of the members of the Scyllaridae family and provide a great chance to infer the evolution of the larval form in a well-defined group of marine crustaceans.

ACKNOWLEDGEMENTS

Thanks are due to Mrs Judith Gironés, Dr Marta Pascual and Dr Enrique Macpherson for encouraging the completion of this study. Thanks are due to Dr Fátima Hernández for receiving F.P. at the Museo de Ciencias Naturales de Tenerife and Dr Fernando Bordes for receiving F.P. at the Instituto Canario de Ciencias Marinas. We also wish to thank all participants in the MEDITS_ES 2003, 2004 and 2005 cruises on board the RV ‘Cornide de Saavedra’, from which the studied larvae were collected. This work was supported by a pre-doctoral fellowship awarded by the Autonomous Government of Catalonia to F.P. (2006FIC-00082). Research was funded by projects CGL2006–13423 and CTM2007–66635 from the Ministerio de Educación y Ciencia. The authors are part of the research group 2009SGR-636, 2009SGR-655 and 2009SGR-1364 of the Generalitat de Catalunya. F.P. acknowledges EU-Synthesys grant (GB-TAF-4474). Financial support was provided to Guillermo Guerao (post-doctoral fellowship) by the Ministry of Science and Education (INIA).

References

REFERENCES

Abelló, P., Valladares, F.J. and Castellón, A. (1988) Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Marine Biology 98, 3949.CrossRefGoogle Scholar
Ahrens, D., Monaghan, M.T. and Vogler, A.P. (2007) DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution 44, 436449.CrossRefGoogle Scholar
Bate, C.S. (1888) Report on the Crustacea Macrura collected by H.M.S. Challenger during the years 1873–76. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–1876 under the command of Captain George S. Nares, N.R., F.R.S., and the late Captain Frank Tourle Thomson, R.N. prepared under the Superintendence of the late Sir C. Wyville Thomson, Knt., F.R.S. &c. Regius Professor of Natural history in the University of Edinburgh of the civilian scientific staff on board and now of John Murray one of the naturalists of the Expedition. Zoology. London, UK: Published by Order of Her Majesty's Government, 942 pp.Google Scholar
Booth, J.D., Webber, W.R., Sekiguchi, H. and Coutures, E. (2005) Diverse larval recruitment strategies within the Scyllaridae. New Zealand Journal of Marine and Freshwater Research 39, 581592.CrossRefGoogle Scholar
Bosc, L.A.G. (1802) Histoire naturelle des Crustacés, contenant leur Descritption et leurs Moeurs; avec figures dessinées d'après nature. Paris: Chez Deterville, No. 2, 296 pp.CrossRefGoogle Scholar
Bosc, L.A.G. (1830) Manuel de l'histoire naturelle des Crustacés, contenant leur description et leurs Moeurs; avec figures dessinées d'après nature. Édition Mise au niveau des connaissances actuelles par M. A. G. Desmarest. Paris: La librairie Encyclopédique De Roret, no. 2, 306 pp.Google Scholar
Bouvier, E.L. (1905) Sur les palinurides et les Eryonides recueillis dans l'Atlantique oriental par les expéditions francaises et monégasques. Comptes Rendus de l'Académie des Sciences 140, 479482.Google Scholar
Bouvier, E.L. (1913) Sur les genres Pseudibacus et Nisto et le stade natant des Crustacés Décapodes macroures de la famille des Scyllaridés. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 156, 16431648.Google Scholar
Bouvier, E.L. (1915a) Sur les formes adaptatives du Scyllarus arctus L. et sur le développement post-larvaire des Scyllares. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 160, 288291.Google Scholar
Bouvier, E.L. (1915b) Scyllarus paradoxus, Miers. Structure, développement post-larvaire, distribution géographique. Bulletin du Muséum d'Histoire Naturelle 21, 4750.Google Scholar
Bouvier, E.L. (1917) Crustacés Décapodes (Macroures Marcheus) Provenant des campagnes des yachts Hirondelle et Princesse-Alice (1885–1915). Résultats des Campagnes Scientifiques du Prince de Monaco 50, 1140.Google Scholar
Burkenroad, M.D. (1963) The evolution of the Eucarida (Crustacea, Eumalacostraca) in relation to the fossil record. Tulane Studies in Geology 2, 316.Google Scholar
Chow, S., Suzuki, N., Imai, N. and Yoshimura, T. (2006a) Molecular species identification of spiny lobster phyllosoma larvae of the genus Panulirus from the northwestern Pacific. Marine Biotechnology 8, 260267.CrossRefGoogle ScholarPubMed
Chow, S., Yamada, H. and Suzuki, N. (2006b) Identification of mid- to final stage phyllosoma larvae of the genus Panulirus White, 1847 collected in the Ryukyu Archipelago. Crustaceana 79, 745764.CrossRefGoogle Scholar
Clark, P.F. (2009) The bearing of larval morphology on brachyuran phylogeny. In Martin, J.W., Crandall, K.A. and Felder, D.L. (eds) Decapod crustacean phylogenetics, Crustacean Issues, CRC/Taylor & Francis, pp. 221244.CrossRefGoogle Scholar
Clark, P.F., Calazans, D.K. and Pohle, G.W. (1998) Accuracy and standardization of brachyuran larval descriptions. Invertebrate Reproduction and Development 33, 127144.CrossRefGoogle Scholar
Costa, O.G. and Costa, A. (1840) Catalogo dei Crostacei del regno di Napoli. In Fauna del Regno di Napoli ossia Enumerazione di tutti gli animali che abitano le diverse regioni di questo regno e le acque che le bagnano contenente la descrizione de nuovi poco esattamente conosciuti.Google Scholar
Coutures, E. and Webber, R. (2005) Phyllosoma and nisto stages of Scyllarinae sp. D (Crustacea: Decapoda: Scyllaridae) from the southwest lagoon of New Caledonia. Zootaxa 873, 120.CrossRefGoogle Scholar
Dana, J.D. (1852a) Conspectus Crustaceorum & Conspectus of the Crustacea of the Exploring Expedition under Capt. C. Wilkes, U.S.N. MACROURA. Proceedings of the Academy of Natural Sciences of Philadelphia 6, 1028.Google Scholar
Dana, J.D. (1852b) Conspectus of the Crustacea of the Exploring Expedition under Capt. C. Wilkes, U.S.N., PAGURIDEA, continued, MEGALOPIDAE, and MACROURA. Scientific Intelligence, III. Zoology. The American Journal of Science and Arts second series, XIV, 116125.Google Scholar
Dana, J.D. (1853) Crustacea, Part 1. In United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842, under the Command of Charles Wilkes, U.S.N. Philadelphia: C. Sherman, 685 pp.Google Scholar
Demirhindi, U. (1959) Marmara Denizi Crustacea larvalari (Turkish). Hidrobiologi Arastirma Enstitusu Yayinlarindan series A 5, 4261.Google Scholar
Dupuis, C. (1975) Objections aux propositions de Bousfield & Holthuis (1969) concernant une douzaine de genres d'Amphipodes. Bulletin of Zoological Nomenclature 32, 35.Google Scholar
Evans, K.M., Wortley, A.H. and Mann, D.G. (2007) An assessment of potential diatom ‘‘barcode’' genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158, 349364.CrossRefGoogle ScholarPubMed
Fabricius, J.C. (1775) Systematica Entomologia sistens Insectorum classes, Ordines, Genera, Species, Adjectis Synonymis, Locis, Discriptionibus Observationibus, Flensburgi et Lipsiae.Google Scholar
Forest, J. and Holthuis, L.B. (1960) The occurrence of Scyllarus pygmaeus (Bate) in the Mediterranean. Crustaceana 1, 156163.CrossRefGoogle Scholar
García-Raso, J.E. (1982) Família Scyllaridae Latreille 1825 (Crustacea, Decapoda) en la región sur-mediterránea española. Boletín de la Asociación Española de Entomología 6, 7378.Google Scholar
de Haan, W. (1849) Crustacea. In von Siebold, P.F. (ed.) Fauna Japonica, sive Descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, quisummumin India Batava imperium tenent, suscepto, annis 1823–1830 collegit, notis, observationibus et adumbrationibus illustravit P.F. de Siebold. Conjunctis studiis C.J. Temminck et H. Schlegel pro Vertebratis atque W. de Haan pro Invertebratis elaborata Regis aupicus edita. Leiden: Lugduni Batavorum. Decas VII, 197243, i–xxi, pls 49, 50, O–Q.Google Scholar
Hajibabaei, M., Singer, G.A., Hebert, P.D. and Hickey, D.A. (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23, 167172.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywinska, A., Ball, S.L. and DeWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Biological Sciences 270, 313321.CrossRefGoogle ScholarPubMed
Herbst, J.F.W. (1793) Versuch einer Naturgeschichte der Krabben und Krebse, nebst einer systematischen Beschreibung ihrer verschiedenen Arten. Berlin und Stralsund: Gottlieb, August und Lange 2, 79146.Google Scholar
Higa, T. and Shokita, S. (2004) Late-stage phyllosoma larvae and metamorphosis of a scyllarid lobster, Chelarctus cultrifer (Crustacea: Decapoda: Scyllaridae), from the northwestern Pacific. Species Diversity 9, 221250.CrossRefGoogle Scholar
Holthuis, L.B. (1978) The Mediterranean Decapod and Stomatopod Crustacea in A. Risso's published works and manuscripts. Annales du Muséum d'Histoire Naturelle de Nice 5, 3788.Google Scholar
Holthuis, L.B. (1985) A revision of the family Scyllaridae (Crustacea Decapoda Macrura). I. Subfamily Ibacinae. Zoologische Verhandelingen 218, 1130.Google Scholar
Holthuis, L.B. (1987) Homards, langoustines, langoustes et cigales. Fiches FAO d'identification des espèces pour les besoins de la pêche. Méditerranée et Mer Noire. Zone de Pêche 37. Rome: FAO.Google Scholar
Holthuis, L.B. (1991) FAO species catalogue. Volume 13 Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fisheries Synopsis, 125.Google Scholar
Holthuis, L.B. (2002) The Indo-Pacific scyllarine lobsters (Crustacea, Decapoda, Scyllaridae). Zoosystema 24, 499683.Google Scholar
Hope, F.G. (1851) Catalogo dei Crostacei Italiani e di molti altri de Mediterraneo. Napoli: Stabilimento Tipographico di Fr. Azzolino, 48 pp.Google Scholar
Inoue, N. and Sekiguchi, H. (2006) Descriptions of phyllosoma larvae of Scyllarus bicuspidatus and S. cultrifer (Decapoda, Scyllaridae) collected in Japanese waters. Plankton Benthos Research 1, 2641.CrossRefGoogle Scholar
Ito, M. and Lucas, J.S. (1990) The complete larval development of the scyllarid lobster, Scyllarus demani Holthuis, 1946 (Decapoda, Scyllaridae), in the laboratory. Crustaceana 58, 144167.CrossRefGoogle Scholar
John, U., Medlin, L.K. and Groben, R. (2005) Development of specific rRNA probes to distinguish between geographic clades of the Alexandrium tamarense species complex. Journal of Plankton Research 27, 199204.CrossRefGoogle Scholar
Johnson, M.W. (1971) The phyllosoma larva of Scyllarus delfini (Bouvier) (Decapoda, Palinuridea). Crustaceana 21, 161164.CrossRefGoogle Scholar
Kumar, S., Tamura, K. and Nei, M. (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle ScholarPubMed
Latreille, P.A. (1802) Histoire naturelle, générale et particulière, des Crustacés et des Insectes. Ouvrage faisant suite a l'Histoire Naturelle générale et particuliere, composée par Leclerc de Buffon, et rédigé par C.S. Sonnini, membre de plusieurs Sociétés savantes. Familles naturelles des Genres. Paris. 3, 1467. [For date of publication see Dupuis, 1975]Google Scholar
Latreille, P.A. (1825) Familles Naturelles du Règne Animal, expsées succinctement et dans un ordre analytique, avec l'indication de leurs genres. Paris, France.Google Scholar
Leach, W.E. (1814) Crustaceology. The Edinburgh Encyclopaedia. Brewster, D.. Edinburgh 7(2), pp. 385437.Google Scholar
Lindley, J.A., Hernandez, F., Tejera, E. and Correia, S.M. (2004) Phyllosoma larvae (Decapoda: Palinuridea) of the Cape Verde Islands. Journal of Plankton Research 26, 235240.CrossRefGoogle Scholar
Linnaeus, C. (1758) Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis Synonymis, Locis. 824 pp.Google Scholar
Litaker, R.W., Vandersea, M.W., Kibler, S.R., Reece, K.S., Stokes, N.A., Lutzoni, F.M., Yonish, B.A., West, M.A., Black, M.N.D. and Tester, P.A. (2007) Recognizing dinoflagellate species using ITS rDNA sequences. Journal of Phycology 43, 344355.CrossRefGoogle Scholar
Lukis, F.C. (1835a) Art. III. Illustrations of a Species of ?Phyllosòma Leach and Latreille, or of an undescribed genus allied to Phyllosòma; and of Squílla Desmaréstii Risso; as observed in a living Individual of each, taken on the Coast of Guernsey. Magazine of Natural History 8, 459464, figs 38–40.Google Scholar
Lukis, F.C. (1835b) Phyllosòma sarniénse Lukis, and other species, 461. General Index. Magazine of Natural History 8, 685.Google Scholar
Lukis, F.C. (1836) Phyllosòma sarniénse correction. Magazine of Natural History 9, 4849.Google Scholar
McWilliam, P.S., Phillips, B.F. and Kelly, S. (1995) Phyllosoma larvae of Scyllarus species (Decapoda, Scyllaridae) from the shelf waters of Australia. Crustaceana 68, 537566.Google Scholar
Mura, M., Cau, A. and Deiana, A.M. (1984) II genere Scyllarus Fabr., 1775 nel Mediterraneo centro-occidentale. Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 54, 267274.Google Scholar
Palero, F., Guerao, G. and Abelló, P. (2008) Morphology of the final stage phyllosoma larva of Scyllarus pygmaeus (Crustacea: Decapoda: Scyllaridae), identified by DNA analysis. Journal of Plankton Research 30, 483488.CrossRefGoogle Scholar
Palero, F., Guerao, G., Clark, P.F. and Abelló, P. (2009a) The identities of Nisto laevis and Nisto asper Sarato, 1885 (Crustacea: Decapoda: Scyllaridae), verified by DNA analysis. Invertebrate Systematics 23, 7785.CrossRefGoogle Scholar
Palero, F., Crandall, K.A., Abelló, P., Macpherson, E. and Pascual, M. (2009b) Phylogenetic relationships between spiny, slipper and coral lobsters (Crustacea, Decapoda, Achelata). Molecular Phylogenetics and Evolution 50, 152162.CrossRefGoogle ScholarPubMed
Palero, F., Pascual, M., Crandall, K.A., Abelló, P., Macpherson, E., Lavalli, K. and Spanier, E. (2009c) Samples needed to complete phylogenetic analysis of achelate lobsters. The Lobster Newsletter 22, 1618.Google Scholar
Palumbi, S.R. (1996) Nucleic acids, II: the polymerase chain reaction. In Hillis, D.M., Moritz, C. and Mable, B.K. (eds) Molecular systematics. Sunderland, MA: Sinauer Associates, Inc, pp. 205247.Google Scholar
Pegg, G.G., Sinclair, B., Briskey, L. and Aspden, W.J. (2006) MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Scientia Marina 70S2, 712.CrossRefGoogle Scholar
Pennant, T. (1777) Crustacea, Mollusca, Testacea, British Zoology. London, 136 pp.Google Scholar
Pessani, D. and Mura, M. (2007) The biology of the Mediterranean scyllarids. In Lavalli, K.L. and Spanier, E. (eds) The biology and fisheries of slipper lobsters. Crustacean Issues. Boca Raton, FL: CRC Press, pp. 263286.CrossRefGoogle Scholar
Phillips, B.F. and McWilliam, M.C. (1986) Phyllosoma and nisto stage of Scyllarus martensii Pfeffer (Decapoda, Scyllaridae) from the Gulf of Carpentaria, Australia. Crustaceana 51, 133154.CrossRefGoogle Scholar
Phillips, B.F., Brown, P., Rimmer, D. and Braine, S. (1981) Description, distribution and abundance of late larval stages of the Scyllaridae (slipper lobsters) in the south-eastern Indian Ocean. Australian Journal of Marine and Freshwater Research 32, 417437.CrossRefGoogle Scholar
Risso, A. (1816) Histoire naturelle des Crustacés des environs de Nice. Paris: Grecque, Latine, Allemande, 175 pp.CrossRefGoogle Scholar
Risso, A. (1827) Histoire naturelle des principales productions de l'Europe méridionale et particulièrement de celles des environs de Nice et les Alpes Maritimes. 403 pp.Google Scholar
Risso, A. (1844) Crustacés. Nouveau guide du voyageur dans Nice et notices sur l'histoire civile et naturelle de celle ville, pp. 9399.Google Scholar
Robertson, P.B. (1968) The complete larval development of the sand lobster, Scyllarus americanus (Smith), (Decapoda, Scyllaridae) in the laboratory, with note on larvae from the plankton. Bulletin of Marine Science 18, 294342.Google Scholar
Robertson, P.B. (1971) The larvae and postlarva of the scyllarid lobster Scyllarus depressus (Smith). Bulletin of Marine Science 21, 841865.Google Scholar
Roux, J.L.F.P. (1828) Crustacés de la Méditerranée et de son littoral, décrits et lithographiés. 3 Livraison. Unnumbered pages, pls 1115.Google Scholar
Roux, J.L.F.P. (1830) Crustacés de la Méditerranée et de son littoral, décrits et lithographiés. 5 Livraison. Unnumbered pages, pls 2125.Google Scholar
Sarato, C. (1885) Études sur les Crustacés de Nice. Genre Arctus, Dana; Sous-genre Nisto, Nob. Moniteur des Etrangers de Nice 9 216, 3.Google Scholar
Scholtz, G. and Richter, S. (1995) Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zoological Journal of the Linnean Society 113, 289328.CrossRefGoogle Scholar
Shirai, S.M., Yoshimura, T., Konishi, K. and Kobayashi, T. (2006) Identification of phyllosoma larvae: a molecular approach for Japanese Panulirus lobsters (Crustacea: Decapoda: Palinuridae) using mitochondrial rDNA region. Species Diversity 11, 307325.CrossRefGoogle Scholar
Stephensen, K. (1923) Decapoda-Macrura excl. Sergestidae. (Penaeidae, Pasiphidae, Holophoridae, Nematocarinidae, Scyllaridae, Eryonidae, Nephropsidae, Appendix). In ‘Reports on the Danish Oceanographical Expedition 1908–1910 to the Mediterranean and Adjacent Seas. Volume II. Biology, pp. 185.Google Scholar
Suzuki, N., Murakami, K., Takeyama, H. and Chow, S. (2006) Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fisheries Science 72, 342349.CrossRefGoogle Scholar
Vences, M., Thomas, M., van der Meijden, A., Chiari, Y. and Vieites, D.R. (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology 2, 5.CrossRefGoogle ScholarPubMed
Webber, W.R. and Booth, J.D. (2001) Larval stages, developmental ecology, and distribution of Scyllarus sp. Z (probably Scyllarus aoteanus Powell, 1949) (Decapoda: Scyllaridae). New Zealand Journal of Marine and Freshwater Research 35, 10251056.CrossRefGoogle Scholar
Webber, W.R. and Booth, J.D. (2007) Taxonomy and evolution. In Lavalli, K.L. and Spanier, E. (eds) The biology and fisheries of slipper lobsters. Crustacean Issues. Boca Raton, FL: CRC Press, pp. 2552.CrossRefGoogle Scholar
Wheeler, Q.D. (2008) The new taxonomy. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Zariquiey Álvarez, R. (1968) Crustáceos decápodos ibéricos. Investigaciones Pesquera 32, 1510.Google Scholar
Figure 0

Table 1. Stations where final-stage phyllosoma larvae of Scyllarus were found (* ICM CODE assignation pending).

Figure 1

Fig. 1. Neighbour-joining phylogenetic tree estimated from the partial mitochondrial 16S rDNA sequence data, showing the position of the phyllosoma specimens genetically analysed in the present study.

Figure 2

Fig. 2. Scyllarus arctus. Final-stage phyllosoma, dorsal view. Scale bar = 1 cm.

Figure 3

Fig. 3. Scyllarus arctus. Final-stage phyllosoma. (A) Ventral surface; (B) detail of the pereiopod 5; (C) left side of thorax, dorsal view; (D) telson, dorsal view. Scale bar A = 5 mm; C = 2 mm; D = 1 mm.

Figure 4

Fig. 4. Scyllarus arctus. Final-stage phyllosoma. (A) Right mandible; (B) left mandible; (C) maxillule; (D) maxilla and first maxilliped; (E) second maxilliped; (F) dactylus of first pereiopod; (G) dactylus of fourth pereiopod; (H) pleopod. Scale bar of A–D and H = 500 µm; E = 1 mm; F and G = 200 µm.