Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-06T09:23:42.275Z Has data issue: false hasContentIssue false

Behavior of γ-tubulin during spindle formation in Xenopus oocytes: requirement of cytoplasmic dynein-dependent translocation

Published online by Cambridge University Press:  22 September 2005

Tomoya Kotani
Affiliation:
Present address: Division of Molecular and Developmental Biology, National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan.
Masakane Yamashita
Affiliation:
Laboratory of Molecular and Cellular Interactions, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Vertebrate oocytes do not contain centrosomes and therefore form an acentrosomal spindle during oocyte maturation. γ-Tubulin is known to be essential for nucleation of microtubules at centrosomes, but little is known about the behaviour and role of γ-tubulin during spindle formation in oocytes. We first observed sequential localization of γ-tubulin during spindle formation in Xenopus oocytes. γ-Tubulin assembled in the basal regions of the germinal vesicle (GV) at the onset of germinal vesicle breakdown (GVBD) and remained on the microtubule-organizing centre (MTOC) until a complex of the MTOC and transient-microtubule array (TMA) reached the oocyte surface. Prior to bipolar spindle formation, oocytes formed an aggregation of microtubules and γ-tubulin was concentrated at the centre of the aggregation. At the late stage of bipolar spindle formation, γ-tubulin accumulated at each pole. Anti-dynein antibody disrupted the localization of γ-tubulin, indicating that the translocation described above is dependent on dynein activity. We finally revealed that XMAP215, a microtubule-associated protein cooperating with γ-tubulin for the assembly of microtubules, but not γ-tubulin, was phosphorylated during oocyte maturation. These results suggest that γ-tubulin is translocated by dynein to regulate microtubule organization leading to spindle formation and that modification of the molecules that cooperate with γ-tubulin, but not γ-tubulin itself, is important for microtubule reorganization.

Type
Research Article
Copyright
2005 Cambridge University Press