Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-06T07:35:21.920Z Has data issue: false hasContentIssue false

Soybean (Glycine max) Tolerance to Timing Applications of Pyroxasulfone, Flumioxazin, and Pyroxasulfone + Flumioxazin

Published online by Cambridge University Press:  20 January 2017

Kristen E. McNaughton*
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
Christy Shropshire
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
Darren E. Robinson
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
*
Corresponding author's E-mail: kmcnaugh@uoguelph.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Four field studies were conducted over a 3-yr period (2011 to 2013) to determine the tolerance of four soybean cultivars to pyroxasulfone (89 and 178 g ai ha−1), flumioxazin (71 and 142 g ai ha−1), and pyroxasulfone + flumioxazin (160 and 320 g ai ha−1) applied either preplant incorporated (PPI), PRE, or at the soybean cotyledon stage (COT). When pyroxasulfone + flumioxazin was applied at 160 and 320 g ai ha−1, at the cotyledon stage soybean yield was decreased by 9 and 14%, respectively. The only other treatment that decreased soybean yield was pyroxasulfone (178 g ai ha−1) applied PPI; yield was decreased by 6% despite minimal injury and dry biomass reductions observed during the season. Soybean tolerance to pyroxasulfone or flumioxazin applied alone was generally similar and injury was less than with pyroxasulfone + flumioxazin. Similarly, herbicides applied PPI and PRE were less injurious to soybean than the COT timing. Results suggest that soybean is tolerant to PPI and PRE applications of pyroxasulfone + flumioxazin but COT applications should be avoided.

Se realizaron cuatro estudios de campo durante un período de 3 años (2011 a 22013) para determinar la tolerancia de cuatro cultivares de soya a pyroxasulfone (89 y 178 g ai ha−1), flumioxazin (71 y 142 g ai ha−1), y pyroxasfulone + flumioxazin (160 y 320 g ai ha−1) aplicados ya sea incorporados en presiembra (PPI), PRE, o en el estado cotiledonal de la soya (COT). Cuando se aplicó pyroxasulfone + flumioxazin a 160 y 320 g ai ha−1 en el estado cotiledonal, el rendimiento de la soya se redujo en 9 y 14%, respectivamente. El único otro tratamiento que disminuyó el rendimiento de la soya fue pyroxasulfone (178 g ai ha−1) aplicado PPI, en el cual el rendimiento se redujo 6% a pesar de que el daño y reducciones de biomasa seca observados fueron mínimos durante la temporada de crecimiento. La tolerancia de la soya a pyroxasulfone o flumioxazin aplicados solos fue generalmente similar y el daño fue menor que con pyroxasulfone + flumioxazin. Similarmente, los herbicidas aplicados PPI y PRE fueron menos dañinos a la soya que al aplicarse COT. Los resultados sugieren que la soya es tolerante a aplicaciones PPI y PRE de pyroxasulfon + flumioxazin, pero las aplicaciones COT deberían ser evitadas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

References

Literature Cited

Anonymous (2013a) Supplemental label—Zidua® herbicide. Research Triangle Park, NC: BASF. 4 pGoogle Scholar
Anonymous (2013b) Specimen label, Valtera® herbicide English label—20130730. Research Lane, ON: Valent. 14 pGoogle Scholar
Anonymous (2013c) Supplemental label—Fierce® herbicide. Walnut Creek, CA: Valent. 8 pGoogle Scholar
Curran, W, Lingenfelter, D (2013) Pyroxasulfone: The New Kid in the Neighborhood. Penn State Extension. http://extension.psu.edu/plants/crops/news/2013/04/pyroxasulfone-the-new-kid-in-the-neighborhood. Accessed February 5, 2014Google Scholar
Ellis, JM, Griffin, JL (2002) Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol 16:541547 CrossRefGoogle Scholar
Heap, I (2014) The International Survey of Herbicide resistant weeds. http://www.weedscience.org. Accessed February 6, 2014Google Scholar
Mahoney, KJ, Shropshire, C, Sikkema, PH (2014) Weed management in conventional- and no-till soybean using flumioxazin/pyroxasulfone. Weed Technol. DOI: http://dx.doi.org/10.1614/WT-D-13-00128.1 CrossRefGoogle Scholar
[OMAFRA] Ontario Ministry of Agriculture and Food (2009) Agronomy Guide for Field Crops. Publication 811. Toronto, ON, Canada: Queen's Printer for Ontario. 306 pGoogle Scholar
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755 CrossRefGoogle Scholar
Taylor-Lovell, S, Wax, LM, Bollero, G. (2002) Preemergence flumioxazin and pendimethalin and postemergence herbicide systems for soybean (Glycine max). Weed Technol 16:502511 CrossRefGoogle Scholar
Taylor-Lovell, S, Wax, LM, Nelson, R (2001) Phytotoxic response and yield of soybean (Glycine max) varieties treated with sulfentrazone or flumioxazin. Weed Technol 15:95102 CrossRefGoogle Scholar
Yoshida, R, Sakaki, M, Sato, R, Haga, T, Nagano, E, Oshio, H, Kamoshita, K (1991) A new N-phenyl phthalimide herbicide. Proc Brighton Crop Prot Conf Weeds 1:6975 Google Scholar