Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-11T04:40:45.514Z Has data issue: false hasContentIssue false

Characterization of Fenoxaprop-P-Ethyl–Resistant Junglerice (Echinochloa colona) from Mississippi

Published online by Cambridge University Press:  20 January 2017

Alice A. Wright*
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762
Vijay K. Nandula
Affiliation:
Crop Production Systems Research Unit, Agricultural Research Service, Stoneville, MS 38776
Logan Grier
Affiliation:
BASF, RTP, NC 27709
Kurt C. Showmaker
Affiliation:
Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762
Jason A. Bond
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762
Daniel G. Peterson
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762
Jeffery D. Ray
Affiliation:
Crop Genetics Research Unit, Agricultural Research Service, Stoneville, MS 38776
David R. Shaw
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762
*
Corresponding author's E-mail: aaw240@msstate.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A population of junglerice from Sunflower County, MS, exhibited resistance to fenoxaprop-P-ethyl. An 11-fold difference in ED50 (the effective dose needed to reduce growth by 50%) values was observed when comparing the resistant population (249 g ae ha–1) with susceptible plants (20 g ae ha–1) collected from a different field. The resistant population was controlled by clethodim and sethoxydim at the field rate. Sequencing of the acetyl coenzyme A carboxylase, which encodes the enzyme targeted by fenoxaprop-P-ethyl, did not reveal the presence of any known resistance-conferring point mutations. An enzyme assay confirmed that the acetyl coenzyme A carboxylase in the resistant population is herbicide sensitive. Further investigations with two cytochrome P450 inhibitors, malathion and piperonyl butoxide, and a glutathione-S-transferase inhibitor, 4-chloro-7-nitrobenzofurazan, did not indicate involvement of any metabolic enzymes inhibited by these compounds. The absence of a known target-site point mutation and the sensitivity of the ACCase enzyme to herbicide show that fenoxaprop-P-ethyl resistance in this population is due to a non–target-site mechanism or mechanisms.

Type
Physiology/Chemistry/Biochemistry
Copyright
Copyright © 2016 by the Weed Science Society of America 

Footnotes

Associate editor for this paper: Marie A. Jasieniuk, University of California, Davis.

References

Literature Cited

Altop, EK, Mennan, H, Streibig, JC, Budak, U, Ritz, C (2014) Detecting ALS and ACCase herbicide tolerant accession of Echinochloa oryzoides (Ard.) Fritsch. in rice (Oryza sativa L.) fields. Crop Prot 65:202206 Google Scholar
Bakkali, Y, Ruiz-Santaella, JP, Osuna, MD, Wagner, J, Fischer, AJ, De Prado, R (2007) Late watergrass (Echinochloa phyllopogon) : mechanisms involved in the resistance to fenoxaprop-p-ethyl J Agric Food Chem 55:40524058 Google Scholar
Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 72:248254 Google Scholar
Burton, JD, Gronwald, JW, Somers, DA, Connelly, JA, Gengenbach, BG, Wyse, DL (1987) Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop Biochem Biophys Res Commun 148:10391044 Google Scholar
Cha, TS, Najihah, MG, Sahid, IB, Chuah, TS (2014) Molecular basis for resistance to ACCase-inhibiting fluazifop in Eleusine indica from Malaysia Pestic Biochem Physiol 111:713 Google Scholar
Christoffers, MJ, Berg, ML, Messersmith, CG (2002) An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat Genome 45:10491056 Google Scholar
Cummins, I, Wortley, DJ, Sabbadin, F, He, Z, Coxon, CR, Straker, HE, Sellars, JD, Knight, K, Edwards, L, Hughes, D, Kaundun, SS, Hutchings, SJ, Steel, PG, Edwards, R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds Proc Natl Acad Sci USA 110:58125817 Google Scholar
Délye, C, Zhang, XQ, Chalopin, C, Michel, S, Powles, SB (2003) An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxphenoxypropionate but not to cyclohexanedione inhibitors Plant Physiol 132:17161723 Google Scholar
Egli, MA, Gengenbach, BG, Gronwald, JW, Somers, DA, Wyse, DL (1993) Characterization of maize acetyl-coenzyme A carboxylase Plant Physiol 101:499506 Google Scholar
Fischer, AJ, Ateh, CM, Bayer, DE, Hill, JE (2000) Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci 48:225230 Google Scholar
Hall, LM, Moss, SR, Powles, SB (1997) Mechanisms of resistance to aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (blackgrass): herbicide metabolism as a cross-resistance mechanism Pestic Biochem Physiol 57:8798 Google Scholar
Heap, I. International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed July 11, 2015.Google Scholar
Hidayat, I, Preston, C (2001) Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis Pestic Biochem Physiol 71:190195 Google Scholar
Kaundun, SS (2010) An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non–target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population Pest Manag Sci 66:12491256 Google Scholar
Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Mentjies, P, Drummond, A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data Bioinformatics 28:16471649 Google Scholar
Konishi, T, Sasaki, Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance towards herbicides Proc Natl Acad Sci USA 91:35983601 Google Scholar
Konishi, T, Shinohara, K, Yamada, K, Sasaki, Y (1996) Acetyl-CoA carboxylase in higher plants: most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme Plant Cell Physiol 37:117122 Google Scholar
Leach, GE, Devine, MD, Kirkwood, RC, Marshall, G (1995) Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica Pestic Biochem Physiol 51:129136 Google Scholar
Li, L, Bi, Y, Liu, W, Yuan, G, Wang, J (2013) Molecular basis for resistance to fenoxaprop-p-ethyl in American sloughgrass (Bechmannia syzigachne Steud.) Pestic Biochem Physiol 105:118121 Google Scholar
Pan, L, Li, J, Xia, W, Zhang, D, Dong, L (2015) An effective method, composed of LAMP and dCAPS to detect different mutations in fenoxaprop-P-ethyl-resistant American sloughgrass (Bechmannia syzigachne Steud.) populations Pestic Biochem Physiol 117:18 Google Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides Annu Rev Plant Biol 61:317347 Google Scholar
Rendina, AR, Felts, JM, Beaudoin, JD, Craig-Kennard, AC, Look, LL, Paraskos, SL, Hagenah, JA (1988) Kinetic characterization, steroselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxphenoxypropionic acid grass herbicides Arch Biochem Biophys 265:219225 Google Scholar
Riar, DS, Norsworthy, JK, Srivastava, V, Nandula, V, Bond, JA, Scott, RC (2012) Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J Agric Food Chem 61:278289.Google Scholar
Scarabel, L, Panozzo, S, Varotto, S, Sattin, M (2011) Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicide in pinoxaden-resistant Lolium spp Pest Manag Sci 67:932941 Google Scholar
Tal, A, Rubin, B (2004) Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum Pest Manag Sci 60:10131018 Google Scholar
Van Eerd, LL, Hoagland, RE, Zablotowicz, RM, Hall, JC (2003) Pesticide metabolism in plants and microorganisms Weed Sci 51:472495.Google Scholar
Yun, M-S, Yogo, Y, Miura, R, Yamasue, Y, Fischer, AJ (2005) Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pestic Biochem Physiol 83:107114.Google Scholar
Zhang, XQ, Powles, SB (2006) Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population New Phytol 172:636645 Google Scholar