No CrossRef data available.
Published online by Cambridge University Press: 19 July 2016
Nuclear jets containing relativistic “hot” particles close to the central engine cool dramatically by producing high energy radiation. The radiative dissipation is similar to the famous Compton drag acting upon “cold” thermal particles in a relativistic bulk flow. Highly relativistic protons induce anisotropic showers raining electromagnetic power down onto the putative accretion disk. Thus, the radiative signature of hot hadronic jets is x-ray irradiation of cold thermal matter. The synchrotron radio emission of the accelerated electrons is self-absorbed due to the strong magnetic fields close to the magnetic nozzle.