Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-06T01:53:53.210Z Has data issue: false hasContentIssue false

Aversive Priming: Cognitive Processing of Threatening Stimuli is Facilitated by Aversive Primes

Published online by Cambridge University Press:  10 January 2013

Evelio Huertas*
Affiliation:
Universidad Complutense (Spain)
*
Correspondence concerning this article should be addressed to Evelio Huertas. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas. 28223 Pozuelo de Alarcón – Madrid (Spain). E-mail: ehuertas@psi.ucm.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It would be reasonable to expect that our previous experience regarding a stimulus that predicts harm would make the subsequent identification of that stimulus easier when harm happens again. Forty-eight volunteers were submitted to both phases of this sequence of events: learning of the predictive relationship and later priming. A face with neutral expression (CS+) was paired with a moderately aversive electric shock and another (CS−) with a neutral tone. Subsequently, these two faces, as well as other known and new faces, were presented for familiarity judgments. Both the CS+ and the CS− faces were preceded by an aversive stimulus (aversive prime) in one occasion and by a neutral stimulus (neutral prime) in another. The familiarity judgment regarding the CS+ was faster after the aversive prime than after the neutral prime, but there was no difference regarding the CS−. The differential effect of the aversive prime over the CS+ and the CS− showed a significant but small correlation with the differential skin conductance response to CS+ and CS− (signal learning), and with the differential evaluation of those stimuli in terms of like-dislike (evaluative learning). The scope of these results, as well as the usefulness of this methodological model, is discussed.

Cabe esperar que nuestra experiencia previa respecto a un estímulo predictor de un daño facilite la identificación posterior de ese estímulo cuando el daño ocurre de nuevo. Se sometió a 48 voluntarios a ambas fases de esta secuencia de hechos: aprendizaje de la relación predictiva y facilitación posterior. Se emparejó una cara con expresión neutra (EC+) con una descarga eléctrica moderadamente aversiva y otra (EC-) con un tono neutro. Posteriormente se sometieron esas dos caras, mezcladas con otras antiguas y nuevas, a juicios de familiaridad. Tanto la cara EC+ como la cara EC- iban precedidas de un estímulo aversivo (prime aversivo) en una ocasión y de un estimulo neutro (prime neutro) en otra. El juicio de familiaridad respecto al EC+ fue más rápido tras el prime aversivo que tras el prime neutro, pero no hubo diferencia en el caso del EC-. El efecto diferencial del prime aversivo sobre el EC+ y el EC- mostró una correlación significativa, aunque pequeña, con la respuesta de conductancia de la piel diferencial al EC+ y al EC- (aprendizaje de señal), y con la evaluación diferencial en términos de agrado-desagrado de uno y otro estímulo (aprendizaje evaluativo). Se discute el alcance de estos resultados y la utilidad del modelo metodológico.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

References

Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133, 124. http://dx.doi.org/10.1037/0033-2909.133.1.1CrossRefGoogle ScholarPubMed
Baeyens, F., Eelen, P., van den Bergh, O., & Crombez, G. (1989). Acquired affective-evaluative value: Conservative but not unchangeable. Behavior Research and Therapy, 27, 279287. http://dx.doi.org/10.1016/0005-7967(89)90047-8CrossRefGoogle Scholar
Belzung, C., & Philippot, P. (2007). Anxiety from a phylogenetic perspective: Is there a qualitative difference between human and animal anxiety? Neural Plasticity, Article ID 59676, 17 pages. http://dx.doi.org/10.1155/2007/59676Google Scholar
Blaney, P. H. (1986). Affect and memory: A review. Psychological Bulletin, 99, 229246. http://dx.doi.org/10.1037/0033-2909.99.2.229CrossRefGoogle ScholarPubMed
Bower, G. H. (1981). Mood and memory. American Psychologist, 36, 129148. http://dx.doi.org/10.1037/0003-066X.36.2.129CrossRefGoogle ScholarPubMed
Bremner, J. D., Innis, R. B., Ng, C. K., Staib, L. H., Salomon, R. M., Bronen, R. A., … Charney, M. D. (1997). Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Archives of General Psychiatry, 54, 246254. http://dx.doi.org/10.1001/archpsyc.1997.01830150070011CrossRefGoogle ScholarPubMed
Brewin, C., Gregory, J., Lipton, M., & Burgess, N. (2010) Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychological Review, 117, 210232. http://dx.doi.org/10.1037/a0018113CrossRefGoogle ScholarPubMed
Cahill, L., Gorski, L., & Le, K., (2003). Enhanced human memory consolidation with post-learning stress: Interaction with the degree of arousal at encoding. Learning and Memory. 10, 270274. http://dx.doi.org/10.1101/lm.62403CrossRefGoogle ScholarPubMed
Cahill, L., Haier, R. J., Fallon, J., Alkire, M., Tang, C., Keator, D., … McGaugh, J. L. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Sciences of the United States of America, 93, 80168021. http://dx.doi.org/10.1073/pnas.93.15.8016CrossRefGoogle ScholarPubMed
Carter, M. D., Hough, M. S., Stuart, A., & Rastatter, M. P. (2011). The effects of inter-stimulus interval and prime modality in a semantic priming task. Aphasiology, 25, 761773. http://dx.doi.org/10.1080/02687038.2010.539697CrossRefGoogle Scholar
Dewitte, M., De Houwer, J., Koster, E. H. W., & Buysse, A. (2007). What's in a name. Attachment-related attentional bias. Emotion, 7, 535545. http://dx.doi.org/10.1037/1528-3542.7.3.535CrossRefGoogle Scholar
Dickinson, A. (1980). Contemporary animal learning theory. Cambridge, England: Cambridge University Press.Google Scholar
Domes, G., Heinrichs, M., Rimmele, U., Reichwald, U., & Hautzinger, M. (2004). Acute stress impairs recognition for positive words—association with stress induced cortisol secretion. Stress, 7, 173181. http://dx.doi.org/10.1080/10253890412331273213CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V. (1976) Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Elzinga, B. M., & Bremner, J. D. (2002). Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? Journal of Affective Disorders, 70, 117. http://dx.doi.org/10.1016/S0165-0327(01)00351-2CrossRefGoogle ScholarPubMed
Freeman, D., & Garety, P.A. (2003) Connecting neurosis and psychosis: The direct influence of emotion on delusions and hallucinations. Behavior Research and Therapy, 41, 923947. http://dx.doi.org/10.1016/S0005-7967(02)00104-3CrossRefGoogle ScholarPubMed
Hofmann, W., De Houwer, J., Perugini, M., Baeyens, F., & Crombez, G. (2010). Evaluative conditioning in humans: A meta-analysis. Psychological Bulletin, 136, 390421. http://dx.doi.org/10.1037/a0018916CrossRefGoogle ScholarPubMed
Hopwood, S., & Bryant, R. A. (2006). Intrusive experiences and hyperarousal in acute stress disorder. British Journal of Clinical Psychology, 45, 137142. http://dx.doi.org/10.1348/014466505X66052CrossRefGoogle ScholarPubMed
Huertas-Rodríguez, E. (1980). Reversibilidad de la relación est ímulo-respuesta en condicionamiento clásico [Reversibility of the stimulus-response relationship in classical conditioning]. Revista de Psicolog ía General y Aplicada, 35, 245253.Google Scholar
Huertas-Rodríguez, E. (1985). Recuperación de un EC sometido a efectos opuestos de asociación E-E y E-R [Retrieval of a CS submitted to opposite effects of S-S and S-R associations]. Revista de Psicolog ía General y Aplicada, 40, 971985.Google Scholar
Huertas-Rodríguez, E. (1991). Cognitive techniques in human classical conditioning. Journal of Psychophysiology, 5, 510.Google Scholar
Huertas, E., Bühler, K. M., Echeverry-Alzate, V., Giménez, T., & López-Moreno, J. A. (2012). C957T polymorphism of the dopamine D2 receptor gene is associated with motor learning and heart rate. Genes, Brain and Behavior, 11, 677683. http://dx.doi.org/10.1111/j.1601-183X.2012.00793.xCrossRefGoogle ScholarPubMed
Huertas, E., Ponce, G., Koeneke, M. A., Poch, C., España-Serrano, L., Palomo, T., … Hoenicka, J. (2010). The D2 dopamine receptor gene variant C957T affects human fear conditioning and aversive priming. Genes, Brain and Behavior, 9, 103109. http://dx.doi.org/10.1111/j.1601-183X.2009.00543.xCrossRefGoogle ScholarPubMed
Jensen, C. F., Keller, T. W., Peskind, E. R., McFall, M. E., Veith, R. C., Martin, D., … Raskind, M. A. (1997). Behavioral and neuroendocrine responses to sodium lactate infusion in subjects with posttraumatic stress disorder. The American Journal of Psychiatry, 154, 266268.Google ScholarPubMed
Joormann, J., & D'Avanzato, C. (2010). Emotion regulation in depression: Examining the role of cognitive processes. Cognition and Emotion, 24, 913939. http://dx.doi.org/10.1080/02699931003784939CrossRefGoogle Scholar
Karabanov, A., Cervenka, S., De Manzano, O., Forssberg, H., Farde, L., & Ullen, F. (2010). Dopamine D2 receptor density in the limbic striatum is related to implicit but not explicit movement sequence learning. Proceedings of the National Academy of Sciences, 107, 75747579. http://dx.doi.org/10.1073/pnas.0911805107CrossRefGoogle Scholar
Kellner, M., Levengood, R., Yehuda, R., & Wiedemann, K. (1998). Provocation of a posttraumatic flashback by cholecystokinin tetrapeptide? American Journal of Psychiatry, 155, 1299.CrossRefGoogle ScholarPubMed
Klauer, K. C., & Musch, J. (2003). Affective priming: Findings and theories. In Musch, J. & Klauer, K. C. (Eds.), The psychology of evaluation: Affective processes in cognition and emotion (pp. 751). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Kuhlmann, S., Kirschbaum, C., & Wolf, O. T. (2005). Effects of oral cortisol treatment in healthy young women on memory retrieval of negative and neutral words. Neurobiology of Learning and Memory, 83, 158162. http://dx.doi.org/10.1016/j.nlm.2004.09.001CrossRefGoogle ScholarPubMed
Levey, A. B., & Martin, I. (1975). Classical conditioning of human “evaluative” responses. Behavior Research and Therapy, 13, 221226. http://dx.doi.org/10.1016/0005-7967(75)90026-1CrossRefGoogle ScholarPubMed
Lonsdorf, T. B., & Kalisch, R. (2011). A review on experimental and clinical genetic associations studies on fear conditioning, extinction and cognitive-behavioral treatment. Translational Psychiatry, 1, 41. http://dx.doi.org/10.1038/tp.2011.36CrossRefGoogle ScholarPubMed
Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87, 252271. http://dx.doi.org/10.1037//0033-295X.87.3.252CrossRefGoogle Scholar
Marks, I. M. (1987). Fears, phobias and rituals. Oxford: Oxford University Press.Google Scholar
Nixon, R. D. V., & Bryant, R. A. (2005). Induced arousal and reexperiencing in acute stress disorder. Journal of Anxiety Disorders, 19, 587594. http://dx.doi.org/10.1016/j.janxdis.2004.05.001CrossRefGoogle ScholarPubMed
Pezze, M. A., & Feldon, J. (2004). Mesolimbic dopaminergic pathways in fear conditioning. Progress in neurobiology, 74, 301320. http://dx.doi.org/10.1016/j.pneurobio.2004.09.004CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187. http://dx.doi.org/10.1016/j.neuron.2005.09.025CrossRefGoogle ScholarPubMed
Pitman, R. K. (1989). Posttraumatic stress disorder, hormones and memory. Biological Psychiatry, 26, 221223. http://dx.doi.org/10.1016/0006-3223(89)90033-4CrossRefGoogle ScholarPubMed
Rainey, J. M., Aleem, A., Ortiz, A., Yeragani, V., Pohl, R., & Berchou, R. (1987). A laboratory procedure for the induction of flashbacks. American Journal of Psychiatry, 144, 13171319.Google ScholarPubMed
Robinson, O. J., Letkiewicz, A. M., Overstreet, C., Ernst, M., & Grillon, C. (2011). The effect of induced anxiety on cognition: Threat of shock enhances aversive processing in healthy individuals. Cognitive, Affective, & Behavioral Neuroscience, 11, 217227. http://dx.doi.org/10.3758/s13415-011-0030-5CrossRefGoogle ScholarPubMed
Roozendaal, B., & McGaugh, J. L. (2011). Memory modulation. Behavioral Neuroscience, 125, 797824. http://dx.doi.org/10.1037/a0026187CrossRefGoogle ScholarPubMed
Sinha, R. (2009). Modeling stress and drug craving in the laboratory: Implications for addiction treatment development. Addiction Biology, 14, 8498. http://dx.doi.org/10.1111/j.1369-1600.2008.00134.xCrossRefGoogle ScholarPubMed
Sinha, R., Shaham, Y., & Heilig, M. (2011). Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology, 218, 6982. http://dx.doi.org/10.1007/s00213-011-2263-yCrossRefGoogle ScholarPubMed
Spruyt, A., De Houwer, J., Hermans, D., & Eelen, P. (2007). Affective priming of nonaffective semantic categorization responses. Experimental Psychology, 54, 4453. http://dx.doi.org/10.1027/1618-3169.54.1.44CrossRefGoogle ScholarPubMed
Southwick, S. M., Krystal, J. H., Morgan, C. A., Johnson, D., Nagy, L. M., Nicolaou, A., … Charney, D. S. (1993). Abnormal noradrenergic function in posttraumatic stress disorder. Archives of General Psychiatry, 50, 266274. http://dx.doi.org/10.1001/archpsyc.1993.01820160036003CrossRefGoogle ScholarPubMed
Tollenaar, M. S., Elzinga, B. M., Spinhoven, P., & Everaerd, W. A. (2008). The effects of cortisol increase on long-term memory retrieval during and after acute psychosocial stress. Acta Psychologica, 127, 542552. http://dx.doi.org/10.1016/j.actpsy.2007.10.007CrossRefGoogle ScholarPubMed
Wagner, A. D., Gabrieli, J. D. E., & Verfaellie, M. (1997). Dissociations between familiarity processes in explicit recognition and implicit perceptual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 305323. http://dx.doi.org/10.1037/0278-7393.23.2.305Google ScholarPubMed
Wiese, H. (2011). The structure of semantic person memory: Evidence from semantic priming in person recognition, British Journal of Psychology, 102, 899914. http://dx.doi.org/10.1111/j.2044-8295.2011.02042.xCrossRefGoogle ScholarPubMed
Witvliet, C. V. (1997). Traumatic intrusive imagery as an emotional memory phenomenon: A review of research and explanatory information processing theories. Clinical Psychology Review, 17, 509536. http://dx.doi.org/10.1016/S0272-7358(97)00025-1Google Scholar
Wolf, O. T. (2009). Stress and memory in humans: Twelve years of progress? Brain Research, 1293, 142154. http://dx.doi.org/10.1016/j.brainres.2009.04.013CrossRefGoogle ScholarPubMed
Wolf, C., & Linden, D. E. (2012). Biological pathways to adaptability – interactions between genome, epigenome, nervous system and environment for adaptive behavior. Genes, Brain and Behavior, 11, 328. http://dx.doi.org/10.1111/j.1601-183X.2011.00752.xCrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2001). Components of episodic memory: The contribution of recollection and familiarity. Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 13631374. http://dx.doi.org/10.1098/rstb.2001.0939CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441517. http://dx.doi.org/10.1006/jmla.2002.2864CrossRefGoogle Scholar