Hostname: page-component-7b9c58cd5d-hpxsc Total loading time: 0 Render date: 2025-03-15T09:46:14.918Z Has data issue: false hasContentIssue false

Path design of redundant flexible robot manipulators to reduce residual vibration in the presence of obstacles

Published online by Cambridge University Press:  13 May 2003

Kyung-Jo Park*
Affiliation:
Division of Mechanical and Automotive Engineering, Yosu National University, Yosu, Chonnanm, 550–749 (South Korea)
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method is presented for generating the path that significantly reduces residual vibration of the redundant, flexible robot manipulator in the presence of obstacles. The desired path is optimally designed so that the system completes the required move with minimum residual vibration, avoiding obstacles. The dynamic model and optimal path are effectively formulated and computed by using a special moving coordinate, called VLCS, to represent the link flexibility. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables. A planar three-link manipulator is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate path, in the presence of obstacles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2003