Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-11T09:06:24.786Z Has data issue: false hasContentIssue false

A FAT-based adaptive controller for robot manipulators without regressor matrix: theory and experiments

Published online by Cambridge University Press:  31 October 2005

An-Chyau Huang
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Taipei (Taiwan, ROC)
Shi-Chang Wu
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Taipei (Taiwan, ROC)
Wen-Fa Ting
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Taipei (Taiwan, ROC)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, an adaptive control scheme is proposed for an n-link rigid robot manipulator without using the regressor. The robot is firstly modeled as a set of second-order nonlinear differential equations with the assumption that all of the matrices in that model are unavailable. Since these matrices are time-varying and their variation bounds are not given, traditional adaptive or robust designs do not apply. The function approximation technique (FAT) is used here to represent uncertainties in some finite linear combinations of orthonormal basis. The dynamics of the output tracking can thus be proved to be a stable first order filter driven by function approximation errors. Using the Lyapunov stability theory, a set of update laws is derived to give closed loop stability with proper tracking performance. Experiments are also performed on a 2-D robot to test the efficacy of the proposed scheme.

Type
Article
Copyright
2005 Cambridge University Press