Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-11T07:00:25.829Z Has data issue: false hasContentIssue false

Convergence properties of gradient-based numerical motion-optimizations for manipulator arms amid static or moving obstacles

Published online by Cambridge University Press:  15 November 2004

Jong-keun Park
Affiliation:
Dept. Mechanical and Automation Engr., Kyungnam University, Masan 631-701 (South Korea) E-mail: jkpark@kyungnam.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper demonstrates the convergence stability and the actual usefulness of the gradient-based motion optimizations for manipulator arms. An optimal motion-planning problem is converted into a finite-dimensional nonlinear programming problem that utilizes cubic or quintic B-splines as basis functions. This study shows that the numerically calculated gradient is a useful tool in finding minimum torque, minimum energy, minimum overload, and minimum time motions for manipulator arms in the presence of static or moving obstacles. A spatial 6-link manipulator is simulated without simplifying any of the kinematic, dynamic or geometric properties of the manipulator or obstacles.

Type
Research Article
Copyright
© 2004 Cambridge University Press