Hostname: page-component-7b9c58cd5d-hpxsc Total loading time: 0 Render date: 2025-03-16T06:28:01.965Z Has data issue: false hasContentIssue false

Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder

Published online by Cambridge University Press:  27 March 2020

Steve Lukito*
Affiliation:
Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
Luke Norman
Affiliation:
Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA The Social and Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland, USA
Christina Carlisi
Affiliation:
Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK Division of Psychology and Language Sciences, University College London, London, UK
Joaquim Radua
Affiliation:
Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
Heledd Hart
Affiliation:
Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
Emily Simonoff
Affiliation:
Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
Katya Rubia
Affiliation:
Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
*
Author for correspondence: Steve Lukito, E-mail: steve.lukito@kcl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Background

People with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have abnormalities in frontal, temporal, parietal and striato-thalamic networks. It is unclear to what extent these abnormalities are distinctive or shared. This comparative meta-analysis aimed to identify the most consistent disorder-differentiating and shared structural and functional abnormalities.

Methods

Systematic literature search was conducted for whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies of cognitive control comparing people with ASD or ADHD with typically developing controls. Regional gray matter volume (GMV) and fMRI abnormalities during cognitive control were compared in the overall sample and in age-, sex- and IQ-matched subgroups with seed-based d mapping meta-analytic methods.

Results

Eighty-six independent VBM (1533 ADHD and 1295 controls; 1445 ASD and 1477 controls) and 60 fMRI datasets (1001 ADHD and 1004 controls; 335 ASD and 353 controls) were identified. The VBM meta-analyses revealed ADHD-differentiating decreased ventromedial orbitofrontal (z = 2.22, p < 0.0001) but ASD-differentiating increased bilateral temporal and right dorsolateral prefrontal GMV (zs ⩾ 1.64, ps ⩽ 0.002). The fMRI meta-analyses of cognitive control revealed ASD-differentiating medial prefrontal underactivation but overactivation in bilateral ventrolateral prefrontal cortices and precuneus (zs ⩾ 1.04, ps ⩽ 0.003). During motor response inhibition specifically, ADHD relative to ASD showed right inferior fronto-striatal underactivation (zs ⩾ 1.14, ps ⩽ 0.003) but shared right anterior insula underactivation.

Conclusions

People with ADHD and ASD have mostly distinct structural abnormalities, with enlarged fronto-temporal GMV in ASD and reduced orbitofrontal GMV in ADHD; and mostly distinct functional abnormalities, which were more pronounced in ASD.

Type
Review Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Introduction

Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are distinct neurodevelopmental conditions. ADHD is characterized by age-inappropriate symptoms of inattention, hyperactivity and impulsivity, whereas ASD is characterized by difficulties in social interaction/communication and stereotypical repetitive behavior [American Psychiatric Association (APA), 2013]. The estimated prevalence of ADHD (5–7%) is higher than ASD (1–2%) worldwide (Elsabbagh et al., Reference Elsabbagh, Divan, Koh, Kim, Kauchali, Marcín and Fombonne2012; Polanczyk, Willcutt, Salum, Kieling, & Rohde, Reference Polanczyk, Willcutt, Salum, Kieling and Rohde2014). In both disorders, brain structural abnormalities have been observed in frontal, temporal, parietal and striato-thalamic networks (Ecker, Reference Ecker2017; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016), although the extent of their overlap is poorly understood. Furthermore, both disorders are associated with cognitive control deficits (Craig et al., Reference Craig, Margari, Legrottaglie, Palumbi, de Giambattista and Margari2016), although ASD relative to ADHD seem less severely impaired (see meta-analyses, Lipszyc & Schachar, Reference Lipszyc and Schachar2010; Willcutt, Sonuga-Barke, Nigg, & Sergeant, Reference Willcutt, Sonuga-Barke, Nigg, Sergeant, Banaschewski and Rohde2008) and display more heterogeneous performance (Geurts, van den Bergh, & Ruzzano, Reference Geurts, van den Bergh and Ruzzano2014; Kuiper, Verhoeven, & Geurts, Reference Kuiper, Verhoeven and Geurts2016). Exploring abnormalities in brain structure and cognitive control function could help elucidate the disorder-differentiating and shared difficulties in ASD and ADHD.

In ADHD, brain abnormalities are thought to represent delayed maturation in brain structure and function mediating late-developing cognitive functions such as cognitive control (Hoogman et al., Reference Hoogman, Bralten, Hibar, Mennes, Zwiers, Schweren and Franke2017; Shaw et al., Reference Shaw, Eckstrand, Sharp, Blumenthal, Lerch, Greenstein and Rapoport2007; Sripada, Kessler, & Angstadt, Reference Sripada, Kessler and Angstadt2014). Correspondingly, previous voxel-based morphometry (VBM) meta-analyses have revealed reduced gray matter volume (GMV) in ventromedial orbitofrontal cortex (vmOFC) and basal ganglia (BG) (Frodl & Skokauskas, Reference Frodl and Skokauskas2012; Nakao, Radua, Rubia, & Mataix-Cols, Reference Nakao, Radua, Rubia and Mataix-Cols2011; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016). In addition, mega-analytic studies by the ENIGMA consortium of subcortical and cortical structure involving over 1700 and 2200 individuals with ADHD, respectively, found reduced GMV in BG, amygdala and hippocampus (Hoogman et al., Reference Hoogman, Bralten, Hibar, Mennes, Zwiers, Schweren and Franke2017), as well as reduced cortical surface areas and thickness in several frontal, temporal and parietal regions (Hoogman et al., Reference Hoogman, Muetzel, Guimaraes, Shumskaya, Mennes, Zwiers and Franke2019).

Converging with these findings are meta-analytic reports of underactivation in lateral and medial fronto-striatal networks in ADHD relative to controls during cognitive control such as in right inferior frontal gyrus (IFG)/anterior insula (AI), supplementary motor area (SMA)/anterior cingulate cortex (ACC), and the striatum (Hart, Radua, Nakao, Mataix-Cols, & Rubia, Reference Hart, Radua, Nakao, Mataix-Cols and Rubia2013; McCarthy, Skokauskas, & Frodl, Reference McCarthy, Skokauskas and Frodl2014; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016). The role of right IFG as a potential biomarker of ADHD in particular has been discussed in several studies and a meta-analysis showing disorder-specificity of underactivation in right and/or left IFG during cognitive control in ADHD children relative to pediatric bipolar disorder (Passarotti, Sweeney, & Pavuluri, Reference Passarotti, Sweeney and Pavuluri2010), obsessive-compulsive disorder (Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016) and conduct disorder (Rubia, Reference Rubia2018; Rubia et al., Reference Rubia, Halari, Cubillo, Mohammad, Scott and Brammer2010b).

In ASD, findings from neuroimaging, post-mortem and head circumference development studies have led to the ‘early brain overgrowth theory’ (Courchesne, Campbell, & Solso, Reference Courchesne, Campbell and Solso2011; Lange et al., Reference Lange, Travers, Bigler, Prigge, Froehlich, Nielsen and Lainhart2015; Redcay & Courchesne, Reference Redcay and Courchesne2005; Schumann et al., Reference Schumann, Bloss, Barnes, Wideman, Carper, Akshoomoff and Courchesne2010), which, however, has been contested in recent studies (Ecker, Schmeisser, Loth, & Murphy, Reference Ecker, Schmeisser, Loth and Murphy2017; Raznahan et al., Reference Raznahan, Wallace, Antezana, Greenstein, Lenroot, Thurm and Giedd2013). Meta-analytic and mega-analytic findings have varied but GMV reduction in the striatum and amygdala/hippocampus was among the more frequently reported (Cauda et al., Reference Cauda, Geda, Sacco, D'Agata, Duca, Geminiani and Keller2011; DeRamus & Kana, Reference DeRamus and Kana2015; Nickl-Jockschat et al., Reference Nickl-Jockschat, Habel, Michel, Manning, Laird, Fox and Eickhoff2012; van Rooij et al., Reference van Rooij, Anagnostou, Arango, Auzias, Behrmann, Busatto and Buitelaar2018; Via, Radua, Cardoner, Happe, & Mataix-Cols, Reference Via, Radua, Cardoner, Happe and Mataix-Cols2011). Another recent meta-analysis of VBM studies in over 900 ASD patients, however, primarily found cortical abnormalities such as GMV decrease in medial prefrontal cortex (mPFC) and posterior insula; and increase in left anterior temporal, right inferior temporo-parietal, left dorsolateral prefrontal (dlPFC) and precentral cortices (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017). Furthermore, the ENIGMA mega-analysis has found cortical thickness increase in frontal and decrease in temporal areas (van Rooij et al., Reference van Rooij, Anagnostou, Arango, Auzias, Behrmann, Busatto and Buitelaar2018).

The whole-brain meta-analysis of functional magnetic resonance imaging (fMRI) studies of cognitive control in ASD (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017) has found underactivation in salience and executive network areas such as mPFC, left dorsolateral and right ventrolateral prefrontal cortices (vlPFC)/AI, left cerebellum, inferior parietal lobe (IPL) and right premotor area; and overactivation in right temporo-parietal regions including default mode network (DMN) areas.

While these meta-analytic findings suggest partially overlapping brain abnormalities in ASD and ADHD, only direct comparisons can elucidate their differences and commonalities. Among such studies, a VBM study showed reduced GMV in ADHD relative to ASD in right posterior cerebellum and ASD-differentiating reduced left middle/superior temporal gyri (M/STG) (Lim et al., Reference Lim, Chantiluke, Cubillo, Smith, Simmons, Mehta and Rubia2015). Furthermore, fMRI studies have shown ASD-differentiating mPFC underactivation during reward reversal (Chantiluke et al., Reference Chantiluke, Barrett, Giampietro, Brammer, Simmons, Murphy and Rubia2015a), shared dlPFC underactivation during sustained attention and working memory (Chantiluke et al., Reference Chantiluke, Barrett, Giampietro, Brammer, Simmons and Rubia2015b; Christakou et al., Reference Christakou, Murphy, Chantiluke, Cubillo, Smith, Giampietro and Rubia2013); and shared precuneus abnormalities during sustained attention, reward reversal and the resting state (Chantiluke et al., Reference Chantiluke, Barrett, Giampietro, Brammer, Simmons, Murphy and Rubia2015a; Christakou et al., Reference Christakou, Murphy, Chantiluke, Cubillo, Smith, Giampietro and Rubia2013; Di Martino et al., Reference Di Martino, Zuo, Kelly, Grzadzinski, Mennes, Schvarcz and Milham2013). Importantly, during successful motor inhibition, ADHD-differentiating underactivation was observed in left vlPFC and BG and ASD-differentiating overactivation in bilateral IFG (Chantiluke et al., Reference Chantiluke, Barrett, Giampietro, Santosh, Brammer, Simmons and Rubia2015c). Few imaging studies, however, have directly compared the two disorders and their relatively small sample sizes have limited statistical power.

We therefore conducted meta-analyses of structural and functional abnormalities related to functions that are commonly impaired in ASD and ADHD, i.e. cognitive control. The aim of the study was to establish the most consistently disorder-differentiating and shared structural and functional deficits, which is important for developing disorder-specific or transdiagnostic treatment. Guided by previous comparative studies and meta-analyses in ASD and/or ADHD, we hypothesized that these disorders are characterized by both shared abnormalities in salience, cognitive control and DMNs as well as disorder-differentiating impairments. Structurally, we hypothesized ADHD-differentiating reduced GMV in BG/insula relative to ASD (Lim et al., Reference Lim, Chantiluke, Cubillo, Smith, Simmons, Mehta and Rubia2015; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016), and ASD-differentiating increased GMV in frontal and temporo-parietal regions (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017; Lim et al., Reference Lim, Chantiluke, Cubillo, Smith, Simmons, Mehta and Rubia2015). During cognitive control, we expected ADHD-differentiating reduced activation in right IFG and BG relative to ASD (Chantiluke et al., Reference Chantiluke, Barrett, Giampietro, Santosh, Brammer, Simmons and Rubia2015c; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016; Passarotti et al., Reference Passarotti, Sweeney and Pavuluri2010; Rubia et al., Reference Rubia, Halari, Smith, Mohammad, Scott and Brammer2009), ASD-differentiating underactivation relative to ADHD in the medial frontal part of the cognitive control network (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017; Chantiluke et al., Reference Chantiluke, Barrett, Giampietro, Brammer, Simmons, Murphy and Rubia2015a) and shared abnormal overactivation in precuneus in both disorders (Chantiluke et al., Reference Chantiluke, Barrett, Giampietro, Brammer, Simmons, Murphy and Rubia2015a; Christakou et al., Reference Christakou, Murphy, Chantiluke, Cubillo, Smith, Giampietro and Rubia2013; Di Martino et al., Reference Di Martino, Zuo, Kelly, Grzadzinski, Mennes, Schvarcz and Milham2013).

Methods

Publication search and study inclusion

Systematic literature search was conducted for peer-reviewed English language publications in PubMed, Scopus, Web of Science and ScienceDirect until 30th November 2018, for whole-brain fMRI or VBM studies in ASD and ADHD. Manual search was conducted in reference lists of previous meta-analyses. Included studies compared the ASD or ADHD groups against typically developing (TD) controls on GMV or on cognitive-control fMRI blood oxygen level dependent signal from stop-signal, go/no-go, switch, Stroop, Simon and flanker, using predefined inhibitory contrasts (online Supplement 1). Only whole-brain neuroimaging data were included, to prevent bias toward specific neuroanatomy (Friston, Rotshtein, Geng, Sterzer, & Henson, Reference Friston, Rotshtein, Geng, Sterzer and Henson2006). Excluded studies used region of interest (ROI) approaches or involved <10 patients, which were deemed lacking in statistical power (Desmond & Glover, Reference Desmond and Glover2002; Nakao et al., Reference Nakao, Radua, Rubia and Mataix-Cols2011; Thirion et al., Reference Thirion, Pinel, Mériaux, Roche, Dehaene and Poline2007). Studies that potentially report duplicate data from other publications (including mega-analyses), have no TD controls, or have provided no peak coordinates, were excluded. When samples overlapped, the largest sample was included. Mean age, proportion of males, mean IQ, cognitive control tasks, current and lifetime psychostimulant use (i.e. proportion of participants being prescribed the medication) and effect size and coordinate location of peaks for regional GMV and activation differences were extracted from each study and authors were contacted for missing information. Reports of exclusion or inclusion of people with co-occurring ASD or ADHD in the counterpart disorder groups were also extracted from the literature. Data were extracted from all studies by SL, 64% of which were also extracted by LN and CC who achieved 100% agreement. This meta-analysis was not pre-registered in a time-stamped, institutional registry prior to the research being conducted.

Meta-analyses

The anisotropic seed-based d Mapping (AES-SDM) meta-analytic software (www.sdmproject.com; online Supplement 1) employed in previous meta-analyses of ASD and ADHD (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017; Frodl & Skokauskas, Reference Frodl and Skokauskas2012; McCarthy et al., Reference McCarthy, Skokauskas and Frodl2014; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016) was used for the present voxel-wise meta-analyses. The software can accommodate statistical parametric maps or peak coordinates and effect sizes (t-scores) data. For the latter, AES-SDM computes signed (positive/negative) effect sizes and variance maps of brain regional differences between clinical and control groups by convolving an anisotropic non-normalized Gaussian kernel with Hedges effect size of each peak. Voxels correlated with the peak values are assigned higher effect sizes. Maps are then combined across studies based on random-effect model, accounting for sample size, within-study variability and between-study heterogeneity. Correlated datasets (e.g. when the same group of participants completed several cognitive tasks) were included in the meta-analysis as a single set (Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016), adjusted for shared variance of brain activation or structure across datasets. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed (Stroup et al., Reference Stroup, Berlin, Morton, Olkin, Williamson, Rennie and Thacker2000).

Age, sex and IQ were compared across patient and control groups prior to meta-analyses in STATA14 (StataCorp, 2015), using sample-size weighted F statistics. First, VBM meta-analyses were conducted in each disorder relative to TD controls and then between the two disorders. Second, equivalent fMRI meta-analyses were conducted to examine the neural impairments observed during cognitive control within and between disorders using all available data. To explore specific cognitive-control subconstructs (e.g. Bari and Robbins, Reference Bari and Robbins2013), we conducted fMRI sub-meta-analyses of prepotent motor response inhibition, including studies employing the go/no-go and stop-signal tasks only. No other cognitive control subconstructs were explored due to insufficient data. To find the most consistent disorder-differentiating neural abnormalities regardless of demographic characteristics, we conducted sensitivity meta-analyses in an age-, sex- and IQ-matched subgroup, instead of covarying group differences in these variables that could result in false positives (Dennis et al., Reference Dennis, Francis, Cirino, Schachar, Barnes and Fletcher2009; Miller & Chapman, Reference Miller and Chapman2001). An iterative algorithm computed group differences in age, sex and IQ for all possible combinations of studies, selecting the largest subgroups with statistically nonsignificant group differences in the three variables (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017). Findings surviving the sensitivity analyses in the matched subgroups are the only ones reported and discussed.

Furthermore, conjunction analyses were used to asses overlapping fMRI and GMV abnormalities within and across disorders (using threshold p < 0.005). To assess consistency of findings across age groups, supplementary age-stratified sub-meta-analyses were conducted in overall pediatric or adult age groups and in their respective age-, sex- and IQ-matched subgroups, where possible (online Supplements 3 and 4). These were complemented with a series of sample-size weighted correlational analyses between the mean sample age and extracted effect sizes of brain abnormalities averaged over 10-mm radius spheres centered at the peaks of disorder-differentiating or shared abnormalities, applying Bonferroni multiple comparison correction (online Supplement 5). Non-parametric correlations were chosen due to the bimodal distribution of age among studies. Following previous meta-analyses (Hart et al., Reference Hart, Radua, Nakao, Mataix-Cols and Rubia2013; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016), psychostimulant effects were explored in separate meta-regressions between brain structure/function and lifetime psychostimulant exposure, i.e. proportions of samples who have ever been exposed to psychostimulants, or current psychostimulant exposure, in brain regions that are found impaired in ADHD (online Supplement 6). Supplementary meta-analyses covarying for task types (motor response inhibition, cognitive interference, motor switching and combination of tasks) and behavioral task performance (impaired, unimpaired) were also conducted to assess their impacts on disorder-differentiating findings (online Supplement 7).

A statistical threshold p < 0.005 was used for all meta-analyses (Radua & Mataix-Cols, Reference Radua and Mataix-Cols2009; Radua et al., Reference Radua, Mataix-Cols, Phillips, El-Hage, Kronhaus, Cardoner and Surguladze2012b), and a reduced threshold p < 0.0005 and a cluster extent 20 voxels was used in the meta-regressions to control for false positives (Radua et al., Reference Radua, Borgwardt, Crescini, Mataix-Cols, Meyer-Lindenberg, McGuire and Fusar-Poli2012a). Egger's tests assessed potential publication bias in the disorder-differentiating and shared findings. Jack-knife sensitivity analyses examined replicability of findings through iterative whole-brain meta-analyses, leaving one dataset out at a time (online Supplement 8; Radua and Mataix-Cols, Reference Radua and Mataix-Cols2009).

Results

Search results and sample characteristics

The systematic literature search identified 140 VBM and fMRI articles of cognitive control in ASD and ADHD. Accounting for datasets of the same clinical participants and, where possible, separating data from pediatric and adult participants resulted in 86 independent VBM datasets (38 datasets including 1533 ADHD participants and 1295 controls; 48 datasets involving 1445 ASD participants and 1477 controls) and 60 independent cognitive-control fMRI datasets (42 datasets involving 1001 ADHD participants and 1004 controls; 18 datasets involving 335 ASD participants and 353 controls) (Tables 1 and 2). Groups did not differ in age in VBM, F (3,83) = 1.24, p = 0.30, and fMRI datasets, F (3,56) = 0.68, p = 0.57, but did in sex in VBM, F (3,83) = 6.03, p = 0.0009, and fMRI datasets, F (3,56) = 5.93, p = 0.0014; and in IQ in VBM, F (3,67) = 16.2, p < 0.0001) and fMRI datasets F (3,45) = 15.5, p < 0.0001. See Table 3 for demographic characteristics.

Table 1. Sample characteristics and summary findings of VBM and fMRI cognitive control studies in ADHD

N, sample size; y, years; pediat., pediatric (child/adolescent) sample; ADHD, attentional-deficit/hyperactivity disorder; TD, typically developing controls; L/R, left/right; GNG, go/no-go.

Brain regions (in alphabetical order): ACC, anterior cingulate cortex; AI, anterior insula; BG, basal ganglia; CC, cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dACC, dorsal ACC; FFG, fusiform gyrus; GP, globus pallidus; I/M/SFG, inferior/middle/superior frontal gyrus; I/SPL, inferior/superior parietal lobe; medial FG, medial frontal gyrus; mPFC, medial prefrontal cortex; M/STG, middle/superior temporal gyrus; OFC, orbitofrontal cortex; OFG, orbitofrontal gyrus; PCC, posterior cingulate cortex; PHG, parahippocampal gyrus; PMC, premotor cortex; pre-/post-CG, pre-/post-central gyrus; SMA, supplementary motor area; STL, superior temporal lobe; STS, superior temporal sulcus; vmPFC, ventromedial prefrontal cortex.

a–g Datasets were combined, adjusting their variance according to the method outlined in Norman et al. (Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016). See online Supplementary Table S2a for further information.

Table 2. Sample characteristics and summary findings of VBM and fMRI cognitive control studies in ASD

N, sample size; y, years; pediat., pediatric (child/adolescent) sample; ASD, autism spectrum disorder; TD, typically developing controls; L/R, left/right; GNG, go/no-go.

Brain region (in alphabetical order): ACC, anterior cingulate cortex; BG, basal ganglia; dACC, dorsal ACC; dlPFC, dorsolateral prefrontal cortex; FFG, fusiform gyrus; I/M/medial/SFG, inferior/middle/medial/superior frontal gyrus; I/M/STG, inferior/middle/superior temporal gyrus; I/SPL, inferior/superior parietal lobe; mPFC, medial prefrontal cortex; OFC, orbital frontal cortex; OFG, orbital frontal gyrus; PCC, posterior cingulate cortex; pre-/post-CG, pre-/post-central gyrus; PHG, parahippocampal gyrus; PMC, premotor cortex; SMA, supplementary motor area; STS, superior temporal sulcus.

See online Supplementary Table S2b for further information.

Table 3. Characteristics of overall sample and subgroups matched on age, sex and IQ

N, overall number of subjects; TDADHD, typically developing controls in the ADHD studies; TDASD, typically developing controls in the ASD studies; VBM, voxel-based morphometry; fMRI, functional magnetic resonance imaging; % males, proportion of males among the samples; y, years; FSIQ, full scale IQ and s.d. = standard deviation.

The demographic characteristics presented here were calculated from the independent datasets with non-overlapping participants.

Disorder-differentiating and shared brain structure abnormalities

ADHD VBM

Relative to TD controls, ADHD had reduced GMV in vmOFC/vmPFC/rostral ACC (rACC), extending into right caudate, and in right putamen/posterior insula/STG, left precingulate gyrus (pre-CG), right rostrolateral PFC and left vlPFC/STG/temporal pole (Table 4A-i; Fig. 1a-i). Age-stratified analyses showed reduced GMV in right STG/putamen/posterior insula, right caudate and rACC/ventromedial PFC (vmPFC) among pediatric participants and vmOFC/subcallosal gyrus in both age groups (online Supplements 3 and 4). Current and lifetime psychostimulant exposures were associated with increased vmOFC GMV (online Supplement 6).

Fig. 1. Brain abnormalities in the ADHD and ASD groups. Abnormalities in (a) GMV and brain activations during (b) cognitive control and (c) motor response inhibition. Rows (i) and (ii) show abnormalities in ADHD and ASD relative to TD controls. Abnormalities in ADHD v. ASD, each relative to TD controls are shown in (iii) overall samples and (iv) age-, sex- and IQ-matched subgroups. In the overall sample, shared reduced rACC/mPFC GMV (MNI coordinates: 0, 46, 12; 119 voxels), and subthreshold overactivation in ADHD and underactivation in ASD in dmPFC (MNI coordinates: −2, 34, 36; 82 voxels) were observed but did not survive sensitivity analysis. A statistical threshold of p < 0.005 with a cluster extent of 20 voxels was used in all analyses.

Table 4. Brain structural and functional abnormalities in ADHD relative to ASD

MNI, Montreal Neurological Institute; SDM, seed-based d mapping; BA, Brodmann area; TD, typically developing controls.

Brain regions (in alphabetical order): AI, anterior insula; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; FFG, fusiform gyrus; IFG, inferior frontal gyrus; I/MOG, inferior/middle occipital gyrus; I/M/STG, inferior/middle/superior temporal gyrus; I/SPL, inferior/superior parietal lobe; M/SFG, middle/superior frontal gyrus; PCC, posterior cingulate cortex; PFC, prefrontal cortex; PHG, parahippocampal gyrus; pre-CG, precentral gyrus; rACC, rostral anterior cingulate cortex; SMA, supplementary motor area; vlPFC, ventrolateral prefrontal cortex; vmOFC, ventromedial orbitofrontal cortex; vmPFC, ventromedial prefrontal cortex.

Bold prints indicate regions which survived the sensitivity analyses in subgroups matched on age, sex and IQ.

ASD VBM

Relative to TD controls, ASD had GMV reduction in dACC/dorsomedial PFC (dmPFC), left cerebellum, right hippocampus/PHG/fusiform gyrus (FFG) and dorsomedial thalamus; and enhancement in left anterior inferior/middle/superior temporal gyri (I/M/STG)/posterior insula, bilateral precuneus/posterior cingulate cortex (PCC) and right middle/superior frontal gyrus (M/SFG) (Table 4A-ii; Fig. 1a-ii). Most abnormalities in the overall sample, i.e. in left cerebellum, dorsomedial thalamus, precuneus/PCC and right MFG/SFG/dlPFC GMV were also found among pediatric participants, and enhanced left anterior STG/MTG GMV was found in both age subgroups (online Supplements 3 and 4).

ADHD v. ASD VBM

People with ADHD, relative to ASD, had consistently disorder-differentiating reduced vmOFC/rACC/left caudate GMV; while people with ASD, relative to ADHD, showed increased GMV in left anterior STG/MTG, right MFG/SFG/dlPFC, and right posterior MTG/STG (Table 4A-iii, iv; Fig. 1a-iii, iv). Reduced vmOFC GMV was most consistently ADHD-differentiating in adults, while the medial prefrontal GMV reduction in rACC/dmPFC was more apparent among pediatric participants (online Supplements 3 and 4).

Disorder-differentiating and shared brain abnormalities during cognitive control

ADHD fMRI

During cognitive control, ADHD relative to TD controls, showed underactivation in right thalamus/caudate, left MTG/STG/superior temporal pole, bilateral SMA/dmPFC, left IFG/AI/temporal pole, right AI/putamen, left postcingulate gyrus (post-CG), left MFG/dlPFC and right MTG (Table 4B-i, Fig. 1b-i). Age-stratified analyses showed underactivated dmPFC clusters and left post-CG among pediatric participants, in all regions but the dmPFC and left post-CG in adults; and in left M/STG/temporal pole in both groups (online Supplements 3 and 4). Lifetime psychostimulant exposure was positively associated with activation in left IFG (online Supplement 6).

During motor response inhibition specifically, underactivation was found in ADHD relative to TD controls in left MFG/dlPFC, left anterior MTG/STG, left post-CG, right vlPFC/OFC/AI, right IFG and right caudate (Table 4C-i, Fig. 1c-i). Age-stratified analyses showed that underactivation in left MTG/STG was apparent among pediatric participants, underactivation in left MFG/dlPFC was apparent in adults, while underactivation in right vlPFC/AI was apparent in both age groups (online Supplements 3 and 4).

ASD fMRI

During cognitive control, ASD relative to TD controls showed underactivation in ACC/midcingulate/dmPFC, left MFG/dlPFC, right MFG/dlPFC, left IPL and left lingual gyrus/cerebellum; and overactivation in left precuneus/midcingulate, right inferior occipital gyrus (IOG), left vlPFC/OFC, left MFG/rostrolateral PFC and right IFG (Table 4B-ii, Fig. 1b-ii). Underactivation in rdACC/dmPFC and left IPL; and overactivation in precuneus, left vlPFC/OFC and left MFG/dlPFC were found in adults (online Supplements 3 and 4). No pediatric sub-meta-analyses were conducted due to insufficient fMRI data.

During motor response inhibition, underactivation was found in ASD relative to TD controls in right AI/vlPFC, left cerebellum, right MFG/dlPFC and right PCC/precuneus; while overactivation was found in left vlPFC/OFC and right IOG/FFG/ITG (Table 4C-ii; Fig. 1c-ii). No age-stratified sub-meta-analyses were conducted due to insufficient data.

ADHD v. ASD fMRI

During cognitive control, ASD-differentiating underactivation was found in rACC/midcingulate/dmPFC and left MFG/dlPFC; and overactivation was found in precuneus, right IOG/FFG, right IFG and left vlPFC/OFC (Table 4B-iii, iv; Fig. 1b-iii, iv). The age-stratified analysis, which was conducted only in adults due to available data, found ASD-differentiating underactivation relative to ADHD in rdACC/dmPFC and overactivation in precuneus and left vlPFC/OFC (online Supplement 4). No ADHD-differentiating abnormalities were found.

During motor response inhibition, ADHD-differentiating underactivation was found in right caudate and IFG. Furthermore, ASD-differentiating underactivation was found in left lingual gyrus/FFG/cerebellum, right precuneus and right MFG/dlPFC; while overactivation was found in right IOG/FFG, left vlPFC/OFC and left MFG/SFG/dlPFC (Table 4C-iii, iv; Fig. 1c-iii, iv). Underactivation in right AI (MNI coordinates: 40, 20, −6; 51 voxels) was shared between disorders.

Multimodal VBM and fMRI analyses

In ADHD relative to TD controls, overlapping reduced GMV and fMRI underactivation was found during cognitive control in right caudate nucleus (MNI coordinates: 10, 10, 8; 194 voxels). In ASD relative to TD controls, reduced GMV and fMRI underactivation was found in dACC/mPFC (MNI coordinates: 0, 40, 16; 575 voxels).

Controlling for task type and performance in fMRI meta-analysis

The disorder-differentiating impairment during cognitive control was unchanged after covarying for task types and performance. During motor response inhibition, ADHD-differentiating underactivation in right IFG and caudate did not survive covarying for task performance (online Supplement 7).

Publication bias and jack-knife reliability findings

Egger tests suggest no significant publication bias for the structural, ts(84) = 0.32–2.29, ps ⩾ 0.1, and functional abnormalities during cognitive control, ts(58) = 0.04–1.90, ps ⩾ 0.38, and during motor response inhibition specifically, ts(40) = 0.41–1.37, ps ⩾ 0.99 (Bonferroni adjusted p values). Jack-knife reliability analyses suggest robust disorder-differentiating findings (online Supplement 8).

Discussion

We aimed at elucidating the most consistent disorder-differentiating and shared brain abnormalities in ASD and ADHD. The findings revealed predominantly disorder-differentiating abnormalities, particularly striking in the VBM meta-analysis, where we found ADHD-differentiating reduced GMV in vmOFC; and ASD-differentiating increased GMV in bilateral temporal and right lateral prefrontal cortices. In fMRI, the findings overall showed predominantly ASD-differentiating abnormalities, including underactivation in medial frontal and overactivation in bilateral ventrolateral regions and precuneus during cognitive control. During motor response inhibition specifically, ADHD-differentiating underactivation was in right IFG and caudate, while ASD had differentiating underactivation mostly in posterior regions, and overactivation in left dorsal and ventral frontal regions (Fig. 2). Both disorders shared underactivation in right AI. The findings overall suggest that people with ADHD and ASD have mostly distinct brain abnormalities.

Fig. 2. Summary of consistent disorder-differentiating and shared brain abnormalities in ADHD and ASD. Findings of (a) GMV abnormalities and brain activation abnormalities during (b) cognitive control and (c) motor response inhibition. A statistical threshold of p < 0.005 with a cluster extent of 20 voxels was used in all analyses.

The ADHD-differentiating decreased GMV in vmOFC relative to ASD may be related to common reports of reward-based decision-making neural network dysfunctions in ADHD (e.g. Chantiluke et al. Reference Chantiluke, Christakou, Murphy, Giampietro, Daly, Ecker and Rubia2014; Cubillo, Halari, Smith, Taylor, & Rubia, Reference Cubillo, Halari, Smith, Taylor and Rubia2012; Rubia, Reference Rubia2018; Tegelbeckers et al. Reference Tegelbeckers, Kanowski, Krauel, Haynes, Breitling, Flechtner and Kahnt2018), and supports the hypothesis of distinctive reward processing in ASD and ADHD (Kohls et al., Reference Kohls, Thönessen, Bartley, Grossheinrich, Fink, Herpertz-Dahlmann and Konrad2014; van Dongen et al., Reference van Dongen, von Rhein, O'Dwyer, Franke, Hartman, Heslenfeld and Buitelaar2015). Reduced vmOFC GMV in ADHD compared to TD controls extends relatively recent meta-analytic findings (McGrath & Stoodley, Reference McGrath and Stoodley2019; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016), and there have been correlational reports between OFC GMV reduction and increased ADHD symptoms in large-scale general population studies (Albaugh et al., Reference Albaugh, Orr, Chaarani, Althoff, Allgaier, D'Alberto and Potter2017; Fuentes et al., Reference Fuentes, Barros-Loscertales, Bustamante, Rosell, Costumero and Avila2012; Korponay et al., Reference Korponay, Dentico, Kral, Ly, Kruis, Goldman and Davidson2017). Interestingly, our age-stratified results suggest that the ADHD-differentiating deficit features more consistently in adulthood, when co-occurring addiction behavioral problems increase (e.g. Breyer et al. Reference Breyer, Botzet, Winters, Stinchfield, August and Realmuto2009; Ortal et al. Reference Ortal, van de Glind, Johan, Itai, Nir, Iliyan and van den Brink2015), more so in ADHD than in ASD (e.g. Sizoo et al. Reference Sizoo, van den Brink, Koeter, Gorissen van Eenige, van Wijngaarden-Cremers and van der Gaag2010; Solberg et al. Reference Solberg, Zayats, Posserud, Halmoy, Engeland, Haavik and Klungsoyr2019).

The increased left anterior and right posterior temporal GMV in ASD is a consistent VBM meta-analytic finding in ASD relative to TD controls (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017; Cauda et al., Reference Cauda, Geda, Sacco, D'Agata, Duca, Geminiani and Keller2011; DeRamus & Kana, Reference DeRamus and Kana2015; Duerden, Mak-Fan, Taylor, & Roberts, Reference Duerden, Mak-Fan, Taylor and Roberts2012). Enhanced left anterior GMV was the only mega-analytic impairment finding in over 400 people with ASD but it did not survive in smaller age- and sex-matched subgroups (Riddle, Cascio, & Woodward, Reference Riddle, Cascio and Woodward2017). Our meta-analysis may have increased statistical power to detect the differences. The ASD-differentiating increased left temporal GMV extends findings from a small VBM ASD/ADHD comparative study (Lim et al., Reference Lim, Chantiluke, Cubillo, Smith, Simmons, Mehta and Rubia2015). The left temporal lobe plays roles in semantic and language processing (Binder et al., Reference Binder, Gross, Allendorfer, Bonilha, Chapin, Edwards and Weaver2011), while the right posterior temporoparietal cortices play a role in social interaction and mentalizing, i.e. the ability to attribute mental states in others (Krall et al., Reference Krall, Rottschy, Oberwelland, Bzdok, Fox, Eickhoff and Konrad2015). These structures are important for social cognition, which have been thought to be an ASD-specific impairment (Kana et al., Reference Kana, Maximo, Williams, Keller, Schipul, Cherkassky and Just2015; Lombardo, Chakrabarti, Bullmore, & Baron-Cohen, Reference Lombardo, Chakrabarti, Bullmore and Baron-Cohen2011; White, Frith, Rellecke, Al-Noor, & Gilbert, Reference White, Frith, Rellecke, Al-Noor and Gilbert2014).

The ASD-differentiating increased right dlPFC GMV has not converged in smaller meta-analyses (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017; DeRamus & Kana, Reference DeRamus and Kana2015), possibly reflecting heterogeneity in findings. Right dlPFC is important for cognitive control, working memory and cognitive flexibility (Szczepanski & Knight, Reference Szczepanski and Knight2014). Neuronal and gray matter overgrowth have been reported in pediatric ASD in small ROI-based neuroimaging and post-mortem studies (Carper & Courchesne, Reference Carper and Courchesne2005; Courchesne et al., Reference Courchesne, Mouton, Calhoun, Semendeferi, Ahrens-Barbeau, Hallet and Pierce2011b; Mitchell et al., Reference Mitchell, Reiss, Tatusko, Ikuta, Kazmerski, Botti and Kates2009), but they have not been replicated in wider age range of ASD cases with cognitive flexibility deficits (Griebling et al., Reference Griebling, Minshew, Bodner, Libove, Bansal, Konasale and Hardan2010).

The disorder-differentiating GMV increase in ASD and decrease in ADHD may possibly be related to the disorders' contrasting developmental trajectories (Courchesne et al., Reference Courchesne, Campbell and Solso2011a; Shaw et al., Reference Shaw, Eckstrand, Sharp, Blumenthal, Lerch, Greenstein and Rapoport2007). However, while most of our ADHD-differentiating findings showed reduction in structure and function that may possibly reflect delayed maturation in ADHD, the ASD-differentiating enhanced clusters were not found consistently in the pediatric sub-meta-analysis. Recent findings suggest that early brain overgrowth is not a defining characteristic of toddlers with high-risk for developing ASD (Hazlett et al., Reference Hazlett, Gu, Munsell, Kim, Styner, Wolff and Statistical2017), and may be specific to boys with regressive autism (Nordahl et al., Reference Nordahl, Lange, Li, Barnett, Lee, Buonocore and Amaral2011), who are underrepresented across studies. Thus, our findings are unlikely to reflect early brain overgrowth.

In the fMRI meta-analyses, ASD-differentiating impairments were predominant medial and left middle prefrontal underactivation and in bilateral ventrolateral prefrontal overactivation during cognitive control, while ADHD-differentiating underactivation emerged during motor inhibition in right inferior frontal and striatal regions. The ADHD-differentiating underactivation in right IFG and caudate, key regions implicated in inhibitory control (Rae, Hughes, Weaver, Anderson, & Rowe, Reference Rae, Hughes, Weaver, Anderson and Rowe2014; Zhang, Geng, & Lee, Reference Zhang, Geng and Lee2017), are consistent with previous meta-analytic findings in ADHD during cognitive control (Hart et al., Reference Hart, Radua, Nakao, Mataix-Cols and Rubia2013; McCarthy et al., Reference McCarthy, Skokauskas and Frodl2014; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016) and extends the role of these regions, in particular right IFG, as disorder-specific neurofunctional biomarker of ADHD, as it has previously been observed relative to bipolar, obsessive compulsive and conduct disorders (Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016; Passarotti et al., Reference Passarotti, Sweeney and Pavuluri2010; Rubia, Reference Rubia2018; Rubia et al., Reference Rubia, Halari, Smith, Mohammad, Scott and Brammer2009, Reference Rubia, Cubillo, Smith, Woolley, Heyman and Brammer2010a, Reference Rubia, Halari, Cubillo, Mohammad, Scott and Brammer2010b).

The mPFC underactivation in ASD is a consistent meta-analytic finding during cognitive control and related functions (Carlisi et al., Reference Carlisi, Norman, Lukito, Radua, Mataix-Cols and Rubia2017; Di Martino et al., Reference Di Martino, Ross, Uddin, Sklar, Castellanos and Milham2009; Philip et al., Reference Philip, Dauvermann, Whalley, Baynham, Lawrie and Stanfield2012). The region is also implicated in functions such as sensory, emotion and social-processing domains typically impaired in ASD (Kana, Patriquin, Black, Channell, & Wicker, Reference Kana, Patriquin, Black, Channell and Wicker2016; Martinez-Sanchis, Reference Martinez-Sanchis2014; South & Rodgers, Reference South and Rodgers2017). Intriguingly, the mPFC underactivation was ASD-differentiating relative to ADHD. While both medial and lateral PFC are activated during motor inhibition (Rae et al., Reference Rae, Hughes, Weaver, Anderson and Rowe2014; Zhang et al., Reference Zhang, Geng and Lee2017), the activation of mPFC are more reliably tapped by cognitive interference tasks thus it may have closer associations with change or conflict detection (Aron, Herz, Brown, Forstmann, & Zaghloul, Reference Aron, Herz, Brown, Forstmann and Zaghloul2016). Whether our findings represent dissociated frontal brain functional impairment in ASD from ADHD in sub-constructs of cognitive control should thus be tested further meta-analytically when more fMRI findings are available.

While both disorders show functional abnormalities in PFC in both hemispheres, the ASD-differentiating atypical activation was more predominantly on the left, in contrast to the right-lateralized ADHD-differentiating fronto-striatal underactivation, although atypical brain lateralization is not uncommon finding in ASD (Dichter, Reference Dichter2012; Floris & Howells, Reference Floris and Howells2018; Kleinhans, Muller, Cohen, & Courchesne, Reference Kleinhans, Muller, Cohen and Courchesne2008). Most importantly, comparisons between each disorder relative to their respective TD controls show that neural impairment in ADHD is overwhelmingly characterized by fronto-striato-temporal underactivation, which is in line with the previous findings of a developmental lag of cognitive control networks (Sripada et al., Reference Sripada, Kessler and Angstadt2014), whereas the impairments in ASD implicate both under- and overactivation clusters in executive, attentional and, even, fronto-parieto-occipital visuo-perceptual brain regions. Of note, abnormally enhanced recruitment of posterior brain regions in ASD has been observed during working memory (Koshino et al., Reference Koshino, Carpenter, Minshew, Cherkassky, Keller and Just2005; Vogan et al., Reference Vogan, Morgan, Lee, Powell, Smith and Taylor2014), psychomotor vigilance (Christakou et al., Reference Christakou, Murphy, Chantiluke, Cubillo, Smith, Giampietro and Rubia2013; Murphy et al., Reference Murphy, Christakou, Daly, Ecker, Giampietro, Brammer and Rubia2014) and temporal discounting (Chantiluke et al., Reference Chantiluke, Christakou, Murphy, Giampietro, Daly, Ecker and Rubia2014; Norman et al., Reference Norman, Carlisi, Christakou, Chantiluke, Murphy, Simmons and Rubia2017). This thus suggests a complex pattern of neurofunctional abnormality in ASD, with compromised cortical specialization, possibly reflecting both neural impairments inherent to ASD and, possibly, ensuing neuronal compensation (see review Floris and Howells, Reference Floris and Howells2018).

The ASD-differentiating overactivation in PCC/precuneus, which was also unimpaired in ADHD relative to their respective controls, was unexpected, however. The overactivation in precuneus/PCC in ASD, which has been shown in a variety of tasks and resting-state condition (Christakou et al., Reference Christakou, Murphy, Chantiluke, Cubillo, Smith, Giampietro and Rubia2013; Kennedy, Redcay, & Courchesne, Reference Kennedy, Redcay and Courchesne2006; Murdaugh et al., Reference Murdaugh, Shinkareva, Deshpande, Wang, Pennick and Kana2012; Spencer et al., Reference Spencer, Chura, Holt, Suckling, Calder, Bullmore and Baron-Cohen2012), presumably indicates DMN dysregulation. The lack of overactivation in PCC/precuneus in ADHD during cognitive control were apparent in previous meta-analyses (McCarthy et al., Reference McCarthy, Skokauskas and Frodl2014; Norman et al., Reference Norman, Carlisi, Lukito, Hart, Mataix-Cols, Radua and Rubia2016), and could potentially be related to psychostimulant exposure which has shown to normalize DMN functioning (Liddle et al., Reference Liddle, Hollis, Batty, Groom, Totman, Liotti and Liddle2011; Peterson et al., Reference Peterson, Potenza, Wang, Zhu, Martin, Marsh and Yu2009; Rubia et al., Reference Rubia, Alegria, Cubillo, Smith, Brammer and Radua2014).

Finally, shared functional abnormality between disorders was found during motor response inhibition only in right AI, which is part of the salience network (Menon & Uddin, Reference Menon and Uddin2010). The limited shared abnormality may seem at odds with the typical observation of psychiatric comorbidities in clinical settings, but individuals with ASD and ADHD are typically selectively recruited into imaging studies, excluding specific psychiatric comorbidities, which could have emphasized the differences between disorders, at the cost of their representativeness.

On the other hand, the findings of disorder differences are more likely to be underestimated. First, typically stringent statistical corrections applied by individual studies could have concealed true group differences in coordinate-based meta-analyses. The ADHD-differentiating findings, particularly, are likely underestimated by co-occurring ADHD in the ASD groups due to past preclusion of ADHD diagnosis in ASD (APA, 2000). Studies attempting to include more representative samples of the disorders may have included comorbid ASD and ADHD cases, perhaps at higher rates in ASD than in ADHD, as shown in prevalence studies in community representative samples (Gjevik, Eldevik, Fjæran-Granum, & Sponheim, Reference Gjevik, Eldevik, Fjæran-Granum and Sponheim2011; Hollingdale, Woodhouse, Young, Fridman, & Mandy, Reference Hollingdale, Woodhouse, Young, Fridman and Mandy2019; Salazar et al., Reference Salazar, Baird, Chandler, Tseng, O'sullivan, Howlin and Simonoff2015; Simonoff et al., Reference Simonoff, Pickles, Charman, Chandler, Loucas and Baird2008). Long-term medication exposure is also likely to have masked the ADHD-differentiating findings.

Other limitations of the meta-analyses include the fewer number of participants with ASD relative to ADHD, which could have reduced power for detecting small ASD-differentiating impairments and increased the probability of false positive findings, particularly in the fMRI meta- and sub-meta-analyses. The representativeness of the meta-analytic findings may also be limited by the fact that many studies, particularly in ADHD, investigated males specifically. In ASD, the majority of studies have focused on adults and predominantly high-functioning individuals only (with a few exceptions, i.e. Cai et al. Reference Cai, Hu, Guo, Yang, Situ and Huang2018; Contarino, Bulgheroni, Annunziata, Erbetta, & Riva, Reference Contarino, Bulgheroni, Annunziata, Erbetta and Riva2016; Retico et al. Reference Retico, Giuliano, Tancredi, Cosenza, Apicella, Narzisi and Calderoni2016; Riva et al. Reference Riva, Annunziata, Contarino, Erbetta, Aquino and Bulgheroni2013; Wang et al. Reference Wang, Fu, Chen, Duan, Guo, Chen and Chen2017; Yang et al. Reference Yang, Huang, Li, Fang, Zhao, Nan and Cui2018), even though individuals with learning disability made up a significant proportion of the ASD population (e.g. Charman et al., Reference Charman, Pickles, Simonoff, Chandler, Loucas and Baird2011). Furthermore, brain-behavior correlations could not be examined due to variations of disorder trait measures across studies. Finally, the influence of task discrepancies across studies could not be fully assessed due to limited data for the non-motor cognitive control tasks.

Conclusions

These comparative meta-analyses of brain structure and function show predominantly disorder-differentiating abnormalities in the form of decreased GMV in vmOFC reward-processing regions in ADHD and increased GMV in ASD in frontal and temporal cortices, part of the central executive and social cognition networks. Disorder-differentiating fMRI deficits were predominantly observed in ASD in medial frontal executive, ventrolateral prefrontal and DMN regions when including all cognitive control tasks; and in ADHD in inferior fronto-striatal regions during motor response inhibition only. Shared functional abnormality was limited to right AI during motor response inhibition. Therefore, people with ADHD and ASD appear to have mostly distinct brain structure and cognitive-control functional abnormalities. The findings contribute to the elucidation of the differential brain abnormalities in the two disorders, which is important for the understanding of their underlying pathophysiology and could ultimately aid in the development of future, disorder-differentiated behavioral, pharmacological or neurotherapeutic treatments.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/S0033291720000574.

Acknowledgement

We thank all authors of the included studies who provided additional data for this meta-analysis. We also thank Toby Wise for insightful discussions on the statistical methods used in this meta-analysis.

Financial support

SL and LN were supported by Medical Research Council and Institute of Psychiatry, Psychology, and Neuroscience (IoPPN) Ph.D. Excellence awards. CC is supported by a Wellcome Trust Sir Henry Wellcome Postdoctoral Fellowship (206459/Z/17/Z). JR receives support from the Instituto de Salud Carlos III and co-funded by European Union (ERDF/ESF, ‘Investing in your future’, Miguel Servet Research Contract CPII19/00009 and Research Project Grant PI19/00394). HH was supported by a grant from the Lila Weston Foundation for Medical Research and the Kids Company to KR. ES and KR receive research support from the National Institute of Health Research (NIHR) Biomedical Research Centre at South London and Maudsley Foundation Trust (IS-BRC-1215-20018). ES furthermore is supported by the NIHR through a program grant (RP-PG-1211-20016) and Senior Investigator Award (NF-SI-0514-10073), the European Union Innovative Medicines Initiative (EU-IMI 115300), Autistica (7237) Medical Research Council (MR/R000832/1, MR/P019293/1), the Economic and Social Research Council (ESRC 003041/1) and Guy's and St Thomas' Charitable Foundation (GSTT EF1150502) and the Maudsley Charity. KR and SL are currently supported by an MRC Grant MR/P012647/1 to KR. This study is supported by funding from the UK Department of Health via the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) for Mental Health at South London and the Maudsley National Health Service (NHS) Foundation Trust and the IoPPN, King's College London, which also support both senior authors, ES and KR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Conflict of interest

KR has received grants from Lilly and Shire pharmaceuticals and speaker's bureau from Shire, Lilly and Medice. Other authors report no biomedical financial interests or potential conflicts of interest.

Ethical standards

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

References

Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., … Frith, U. (1999). The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. Neuroreport, 10(8), 16471651. doi: 10.1097/00001756-199906030-00005CrossRefGoogle ScholarPubMed
Ahrendts, J., Rüsch, N., Wilke, M., Philipsen, A., Eickhoff, S. B., Glauche, V., … Tebartz Van Elst, L. (2011). Visual cortex abnormalities in adults with ADHD: A structural MRI study. The World Journal of Biological Psychiatry, 12(4), 260270. doi: 10.3109/15622975.2010.518624CrossRefGoogle ScholarPubMed
Albaugh, M. D., Orr, C., Chaarani, B., Althoff, R. R., Allgaier, N., D'Alberto, N., … Potter, A. S. (2017). Inattention and reaction time variability are linked to ventromedial prefrontal volume in adolescents. Biological Psychiatry, 82(9), 660668. doi: 10.1016/j.biopsych.2017.01.003CrossRefGoogle ScholarPubMed
Ambrosino, S., Bos, D. J., van Raalten, T. R., Kobussen, N. A., van Belle, J., Oranje, B., & Durston, S. (2014). Functional connectivity during cognitive control in children with autism spectrum disorder: An independent component analysis. Journal of Neural Transmission, 121(9), 11451155. doi: 10.1007/s00702-014-1237-8CrossRefGoogle ScholarPubMed
American Psychiatric Association (APA) (Ed.) (2000). Diagnostic and statistical manual of mental disorders (DSM-IV-TR). Washington, DC: APA.Google Scholar
American Psychiatric Association (APA). (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Washington, DC: APA.Google Scholar
Amico, F., Stauber, J., Koutsouleris, N., & Frodl, T. (2011). Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: A voxel-based morphometry study. Psychiatry Research: Neuroimaging, 191(1), 3135. doi: 10.1016/j.pscychresns.2010.08.011CrossRefGoogle ScholarPubMed
Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U., & Zaghloul, K. (2016). Frontosubthalamic circuits for control of action and cognition. Journal of Neuroscience, 36(45), 1148911495. doi: 10.1523/jneurosci.2348-16.2016CrossRefGoogle ScholarPubMed
Banich, M. T., Burgess, G. C., Depue, B. E., Ruzic, L., Bidwell, L. C., Hitt-Laustsen, S., … Willcutt, E. G. (2009). The neural basis of sustained and transient attentional control in young adults with ADHD. Neuropsychologia, 47(14), 30953104. doi: 10.1016/j.neuropsychologia.2009.07.005CrossRefGoogle ScholarPubMed
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 4479. doi: 10.1016/j.pneurobio.2013.06.005CrossRefGoogle ScholarPubMed
Bhaijiwala, M., Chevrier, A., & Schachar, R. (2014). Withholding and canceling a response in ADHD adolescents. Brain and Behavior, 4(5), 602614. doi: 10.1002/brb3.244CrossRefGoogle ScholarPubMed
Binder, J. R., Gross, W. L., Allendorfer, J. B., Bonilha, L., Chapin, J., Edwards, J. C., … Weaver, K. E. (2011). Mapping anterior temporal lobe language areas with fMRI: A multicenter normative study. NeuroImage, 54(2), 14651475. doi: 10.1016/j.neuroimage.2010.09.048CrossRefGoogle ScholarPubMed
Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., … Zilbovicius, M. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry MRI study. NeuroImage, 23(1), 364369. doi: 10.1016/j.neuroimage.2004.06.016CrossRefGoogle ScholarPubMed
Bonath, B., Tegelbeckers, J., Wilke, M., Flechtner, H. H., & Krauel, K. (2016). Regional gray matter volume differences between adolescents with ADHD and typically developing controls: Further evidence for anterior cingulate involvement. Journal of Attention Disorders, 22(7), 627638. doi: 10.1177/1087054715619682.CrossRefGoogle ScholarPubMed
Bonilha, L., Cendes, F., Rorden, C., Eckert, M., Dalgalarrondo, P., Li, L. M., & Steiner, C. E. (2008). Gray and white matter imbalance – Typical structural abnormality underlying classic autism? Brain and Development, 30(6), 396401. doi: 10.1016/j.braindev.2007.11.006CrossRefGoogle ScholarPubMed
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., … Mesulam, M. M. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry, 46(1), 94111. doi: 10.1111/j.1469-7610.2004.00337.xCrossRefGoogle Scholar
Bralten, J., Greven, C. U., Franke, B., Mennes, M., Zwiers, M. P., Rommelse, N. N. J., … Buitelaar, J. K. (2016). Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings. Journal of Psychiatry & Neuroscience, 41(4), 272279. doi: 10.1503/jpn.140377CrossRefGoogle ScholarPubMed
Breyer, J. L., Botzet, A. M., Winters, K. C., Stinchfield, R. D., August, G., & Realmuto, G. (2009). Young adult gambling behaviors and their relationship with the persistence of ADHD. Journal of Gambling Studies, 25(2), 227238. doi: 10.1007/s10899-009-9126-zCrossRefGoogle ScholarPubMed
Brieber, S., Neufang, S., Bruning, N., Kamp-Becker, I., Remschmidt, H., Herpertz-Dahlmann, B., … Konrad, K. (2007). Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 48(12), 12511258. doi: 10.1111/j.1469-7610.2007.01799.xCrossRefGoogle ScholarPubMed
Cai, J., Hu, X., Guo, K., Yang, P., Situ, M., & Huang, Y. (2018). Increased left inferior temporal gyrus was found in both low function autism and high function autism. Frontiers in Psychiatry, 9, 542. doi: 10.3389/fpsyt.2018.00542CrossRefGoogle ScholarPubMed
Carlisi, C. O., Norman, L. J., Lukito, S. S., Radua, J., Mataix-Cols, D., & Rubia, K. (2017). Comparative multimodal meta-analysis of structural and functional brain abnormalities in autism spectrum disorder and obsessive-compulsive disorder. Biological Psychiatry, 82(2), 83102. doi: 10.1016/j.biopsych.2016.10.006CrossRefGoogle ScholarPubMed
Carmona, S., Hoekzema, E., Antoni Ramos-Quiroga, J., Richarte, V., Canals, C., Bosch, R., … Vilarroya, O. (2012). Response inhibition and reward anticipation in medication-naive adults with attention-deficit/hyperactivity disorder: A within-subject case-control neuroimaging study. Human Brain Mapping, 33(10), 23502361. doi: 10.1002/hbm.21368CrossRefGoogle ScholarPubMed
Carmona, S., Vilarroya, O., Bielsa, A., Tremols, V., Soliva, J. C., Rovira, M., … Bulbena, A. (2005). Global and regional gray matter reductions in ADHD: A voxel-based morphometric study. Neuroscience Letters, 389(2), 8893. doi: 10.1016/j.neulet.2005.07.020CrossRefGoogle ScholarPubMed
Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57(2), 126133. doi: 10.1016/j.biopsych.2004.11.005CrossRefGoogle ScholarPubMed
Cauda, F., Geda, E., Sacco, K., D'Agata, F., Duca, S., Geminiani, G., & Keller, R. (2011). Grey matter abnormality in autism spectrum disorder: An activation likelihood estimation meta-analysis study. Journal of Neurology, Neurosurgery, and Psychiatry, 82(12), 13041313. doi: 10.1136/jnnp.2010.239111CrossRefGoogle ScholarPubMed
Chantiluke, K., Barrett, N., Giampietro, V., Brammer, M., Simmons, A., Murphy, D. G., & Rubia, K. (2015a). Inverse effect of fluoxetine on medial prefrontal cortex activation during reward reversal in ADHD and autism. Cerebral Cortex, 25(7), 17571770. doi: 10.1093/cercor/bht365CrossRefGoogle Scholar
Chantiluke, K., Barrett, N., Giampietro, V., Brammer, M., Simmons, A., & Rubia, K. (2015b). Disorder-dissociated effects of fluoxetine on brain function of working memory in attention deficit hyperactivity disorder and autism spectrum disorder. Psychological Medicine, 45(6), 11951205. doi: 10.1017/s0033291714002232CrossRefGoogle Scholar
Chantiluke, K., Barrett, N., Giampietro, V., Santosh, P., Brammer, M., Simmons, A., … Rubia, K. (2015c). Inverse fluoxetine effects on inhibitory brain activation in non-comorbid boys with ADHD and with ASD. Psychopharmacology, 232(12), 20712082. doi: 10.1007/s00213-014-3837-2CrossRefGoogle Scholar
Chantiluke, K., Christakou, A., Murphy, C. M., Giampietro, V., Daly, E. M., Ecker, C., … Rubia, K. (2014). Disorder-specific functional abnormalities during temporal discounting in youth with attention deficit hyperactivity disorder (ADHD), autism and comorbid ADHD and autism. Psychiatry Research, 223(2), 113120. doi: 10.1016/j.pscychresns.2014.04.006CrossRefGoogle Scholar
Charman, T., Pickles, A., Simonoff, E., Chandler, S., Loucas, T., & Baird, G. (2011). IQ In children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychological Medicine, 41(03), 619627. doi: 10.1017/s0033291710000991CrossRefGoogle Scholar
Chen, C.-Y., Yen, J.-Y., Yen, C.-F., Chen, C.-S., Liu, G.-C., Liang, C.-Y., & Ko, C.-H. (2015). Aberrant brain activation of error processing among adults with attention deficit and hyperactivity disorder. Kaohsiung Journal of Medical Sciences, 31(4), 179187. doi: 10.1016/j.kjms.2015.01.001CrossRefGoogle ScholarPubMed
Cheng, Y., Chou, K. H., Fan, Y. T., & Lin, C. P. (2011). ANS: Aberrant neurodevelopment of the social cognition network in adolescents with autism spectrum disorders. PLoS ONE, 6(4), e18905. doi: 10.1371/journal.pone.0018905.CrossRefGoogle ScholarPubMed
Chou, T.-L., Chia, S., Shang, C.-Y., & Gau, S. S.-F. (2015). Differential therapeutic effects of 12-week treatment of atomoxetine and methylphenidate on drug-naive children with attention deficit/hyperactivity disorder: A counting Stroop functional MRI study. European Neuropsychopharmacology, 25(12), 23002310. doi: 10.1016/j.euroneuro.2015.08.024CrossRefGoogle ScholarPubMed
Christakou, A., Murphy, C. M., Chantiluke, K., Cubillo, A. I., Smith, A. B., Giampietro, V., … Rubia, K. (2013). Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Molecular Psychiatry, 18(2), 236244. doi: 10.1038/mp.2011.185CrossRefGoogle ScholarPubMed
Congdon, E., Mumford, J. A., Cohen, J. R., Galvan, A., Aron, A. R., Xue, G., … Poldrack, R. A. (2010). Engagement of large-scale networks is related to individual differences in inhibitory control. NeuroImage, 53(2), 653663. doi: 10.1016/j.neuroimage.2010.06.062CrossRefGoogle ScholarPubMed
Contarino, V. E., Bulgheroni, S., Annunziata, S., Erbetta, A., & Riva, D. (2016). Widespread focal cortical alterations in autism spectrum disorder with intellectual disability detected by threshold-free cluster enhancement. American Journal of Neuroradiology, 37(9), 17211726. doi: 10.3174/ajnr.A4779CrossRefGoogle ScholarPubMed
Courchesne, E., Campbell, K., & Solso, S. (2011a). Brain growth across the life span in autism: Age-specific changes in anatomical pathology. Brain Research, 1380, 138145. doi: 10.1016/j.brainres.2010.09.101CrossRefGoogle Scholar
Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., … Pierce, K. (2011b). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 20012010. doi: 10.1001/jama.2011.1638CrossRefGoogle Scholar
Craig, F., Margari, F., Legrottaglie, A. R., Palumbi, R., de Giambattista, C., & Margari, L. (2016). A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatric Disease and Treatment, 12, 11911202. doi: 10.2147/ndt.s104620Google ScholarPubMed
Craig, M., Zaman, S. H., Daly, E. M., Cutter, W. J., Robertson, D. M. W., Hallahan, B., … Murphy, D. G. M. (2007). Women with autistic-spectrum disorder: Magnetic resonance imaging study of brain anatomy. British Journal of Psychiatry, 191, 224228. doi: 10.1192/bjp.bp.106.034603CrossRefGoogle ScholarPubMed
Cubillo, A., Halari, R., Ecker, C., Giampietro, V., Taylor, E., & Rubia, K. (2010). Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood attention-deficit hyperactivity disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching. Journal of Psychiatric Research, 44(10), 629639. doi: 10.1016/j.jpsychires.2009.11.016CrossRefGoogle ScholarPubMed
Cubillo, A., Halari, R., Giampietro, V., Taylor, E., & Rubia, K. (2011). Fronto-striatal underactivation during interference inhibition and attention allocation in grown up children with attention deficit/hyperactivity disorder and persistent symptoms. Psychiatry Research, 193(1), 1727. doi: 10.1016/j.pscychresns.2010.12.014CrossRefGoogle ScholarPubMed
Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 48(2), 194215. doi: 10.1016/j.cortex.2011.04.007CrossRefGoogle ScholarPubMed
Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M. J., Simmons, A., & Rubia, K. (2014). Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cerebral Cortex, 24(1), 174185. doi: 10.1093/cercor/bhs296CrossRefGoogle ScholarPubMed
Daly, E. M., Ecker, C., Hallahan, B., Deeley, Q., Craig, M., Murphy, C., … Murphy, D. G. M. (2014). Response inhibition and serotonin in autism: A functional MRI study using acute tryptophan depletion. Brain, 137, 26002610. doi: 10.1093/brain/awu178CrossRefGoogle ScholarPubMed
Denisova, K., Zhao, G., Wang, Z., Goh, S., Huo, Y., & Peterson, B. S. (2017). Cortical interactions during the resolution of information processing demands in autism spectrum disorders. Brain and Behavior, 7(2), e00596. doi: 10.1002/brb3.596CrossRefGoogle ScholarPubMed
Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(03), 331. doi: 10.1017/s1355617709090481CrossRefGoogle Scholar
Depue, B. E., Burgess, G. C., Bidwell, L. C., Willcutt, E. G., & Banich, M. T. (2010). Behavioral performance predicts grey matter reductions in the right inferior frontal gyrus in young adults with combined type ADHD. Psychiatry Research: Neuroimaging, 182(3), 231237. doi: 10.1016/j.pscychresns.2010.01.012CrossRefGoogle ScholarPubMed
DeRamus, T. P., & Kana, R. K. (2015). Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. NeuroImage: Clinical, 7, 525536. doi: 10.1016/j.nicl.2014.11.004CrossRefGoogle ScholarPubMed
Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses. Journal of Neuroscience Methods, 118(2), 115128. doi: 10.1016/s0165-0270(02)00121-8CrossRefGoogle ScholarPubMed
Dibbets, P., Evers, E. A. T., Hurks, P. P. M., Bakker, K., & Jolles, J. (2010). Differential brain activation patterns in adult attention-deficit hyperactivity disorder (ADHD) associated with task switching. Neuropsychology, 24(4), 413423. doi: 10.1037/a0018997CrossRefGoogle ScholarPubMed
Dibbets, P., Evers, L., Hurks, P., Marchetta, N., & Jolles, J. (2009). Differences in feedback- and inhibition-related neural activity in adult ADHD. Brain and Cognition, 70(1), 7383. doi: 10.1016/j.bandc.2009.01.001CrossRefGoogle ScholarPubMed
Dichter, G. S. (2012). Functional magnetic resonance imaging of autism spectrum disorders. Dialogues in Clinical Neuroscience, 14(3), 319351. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513685/Google ScholarPubMed
Di Martino, A., Ross, K., Uddin, L. Q., Sklar, A. B., Castellanos, F. X., & Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65(1), 6374. doi: 10.1016/j.biopsych.2008.09.022CrossRefGoogle ScholarPubMed
Di Martino, A., Zuo, X.-N., Kelly, C., Grzadzinski, R., Mennes, M., Schvarcz, A., … Milham, M. P. (2013). Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biological Psychiatry, 74(8), 623632. doi: 10.1016/j.biopsych.2013.02.011CrossRefGoogle ScholarPubMed
D'Mello, A. M., Crocetti, D., Mostofsky, S. H., & Stoodley, C. J. (2015). Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage: Clinical, 7, 631639. doi: 10.1016/j.nicl.2015.02.007CrossRefGoogle ScholarPubMed
Duerden, E. G., Mak-Fan, K. M., Taylor, M. J., & Roberts, S. W. (2012). Regional differences in grey and white matter in children and adults with autism spectrum disorders: An activation likelihood estimate (ALE) meta-analysis. Autism Research, 5(1), 4966. doi: 10.1002/aur.235CrossRefGoogle ScholarPubMed
Duerden, E. G., Taylor, M. J., Soorya, L. V., Wang, T., Fan, J., & Anagnostou, E. (2013). Neural correlates of inhibition of socially relevant stimuli in adults with autism spectrum disorder. Brain Research, 1533, 8090. doi: 10.1016/j.brainres.2013.08.021CrossRefGoogle ScholarPubMed
Durston, S., Mulder, M., Casey, B. J., Ziermans, T., & van Engeland, H. (2006). Activation in ventral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyperactivity disorder. Biological Psychiatry, 60(10), 10621070. doi: 10.1016/j.biopsych.2005.12.020CrossRefGoogle ScholarPubMed
Ecker, C. (2017). The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism, 21(1), 1828. doi: 10.1177/1362361315627136CrossRefGoogle ScholarPubMed
Ecker, C., Schmeisser, M. J., Loth, E., & Murphy, D. G. (2017). Neuroanatomy and neuropathology of autism spectrum disorder in humans. Advances in Anatomy, Embryology and Cell Biology, 224, 2748. doi: 10.1007/978-3-319-52498-6_2CrossRefGoogle ScholarPubMed
Ecker, C., Suckling, J., Deoni, S. C., Lombardo, M. V., Bullmore, E. T., Baron-Cohen, S., … Murphy, D. G. M. (2012). Brain anatomy and its relationship to behavior in adults with autism spectrum disorder. Archives of General Psychiatry, 69(2), 195209. doi: 10.1001/archgenpsychiatry.2011.1251CrossRefGoogle ScholarPubMed
Elsabbagh, M., Divan, G., Koh, Y.-J., Kim, Y. S., Kauchali, S., Marcín, C., … Fombonne, E. (2012). Global prevalence of autism and other pervasive developmental disorders: Global epidemiology of autism. Autism Research, 5(3), 160179. doi: 10.1002/aur.239CrossRefGoogle ScholarPubMed
Fan, J., Bernardi, S., Van Dam, N. T., Anagnostou, E., Gu, X., Martin, L., … Hof, P. R. (2012). Functional deficits of the attentional networks in autism. Brain and Behavior, 2(5), 647660. doi: 10.1002/brb3.90CrossRefGoogle ScholarPubMed
Fan, L. Y., Chou, T. L., & Gau, S. S. (2017). Neural correlates of atomoxetine improving inhibitory control and visual processing in drug-naive adults with attention-deficit/hyperactivity disorder. Human Brain Mapping, 38(10), 48504864. doi: 10.1002/hbm.23683CrossRefGoogle ScholarPubMed
Fan, L. Y., Shang, C. Y., Tseng, W. I., Gau, S. S., & Chou, T. L. (2018). Visual processing as a potential endophenotype in youths with attention-deficit/hyperactivity disorder: A sibling study design using the counting Stroop functional MRI. Human Brain Mapping, 39(10), 38273835. doi: 10.1002/hbm.24214CrossRefGoogle ScholarPubMed
Floris, D. L., & Howells, H. (2018). Atypical structural and functional motor networks in autism. Progress in Brain Research, 238, 207248. doi: 10.1016/bs.pbr.2018.06.010CrossRefGoogle ScholarPubMed
Foster, N. E. V., Doyle-Thomas, K. A. R., Tryfon, A., Ouimet, T., Anagnostou, E., Evans, A. C., … Hyde, K. L. (2015). Structural gray matter differences during childhood development in autism spectrum disorder: A multimetric approach. Pediatric Neurology, 53(4), 350359. doi: 10.1016/j.pediatrneurol.2015.06.013CrossRefGoogle ScholarPubMed
Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., Reith, W., … Krick, C. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 14801494. doi: 10.1016/j.neuropsychologia.2007.12.025CrossRefGoogle ScholarPubMed
Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P., & Henson, R. N. (2006). A critique of functional localisers. NeuroImage, 30(4), 10771087. doi: 10.1016/j.neuroimage.2005.08.012CrossRefGoogle ScholarPubMed
Frodl, T., & Skokauskas, N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatrica Scandinavica, 125(2), 114126. doi: 10.1111/j.1600-0447.2011.01786.xCrossRefGoogle ScholarPubMed
Fuentes, P., Barros-Loscertales, A., Bustamante, J. C., Rosell, P., Costumero, V., & Avila, C. (2012). Individual differences in the behavioral inhibition system are associated with orbitofrontal cortex and precuneus gray matter volume. Cognitive, Affective, & Behavioral Neuroscience, 12(3), 491498. doi: 10.3758/s13415-012-0099-5CrossRefGoogle ScholarPubMed
Gehricke, J. G., Kruggel, F., Thampipop, T., Alejo, S. D., Tatos, E., Fallon, J., & Muftuler, L. T. (2017). The brain anatomy of attention-deficit/hyperactivity disorder in young adults – A magnetic resonance imaging study. PLoS ONE, 12(4), e0175433. doi: 10.1371/journal.pone.0175433CrossRefGoogle ScholarPubMed
Geurts, H. M., van den Bergh, S. F. W. M., & Ruzzano, L. (2014). Prepotent response inhibition and interference control in autism spectrum disorders: Two meta-analyses. Autism Research, 7(4), 407420. doi: 10.1002/aur.1369CrossRefGoogle ScholarPubMed
Gjevik, E., Eldevik, S., Fjæran-Granum, T., & Sponheim, E. (2011). Kiddie-SADS reveals high rates of DSM-IV disorders in children and adolescents with autism spectrum disorders. Journal of Autism and Developmental Disorders, 41(6), 761769. doi: 10.1007/s10803-010-1095-7CrossRefGoogle ScholarPubMed
Gooskens, B., Bos, D. J., Mensen, V. T., Shook, D. A., Bruchhage, M. M. K., & Naaijen, J., … consortium, T. (2018). No evidence of differences in cognitive control in children with autism spectrum disorder or obsessive-compulsive disorder: An fMRI study. Developmental Cognitive Neuroscience, 36, 100602. doi: 10.1016/j.dcn.2018.11.004CrossRefGoogle ScholarPubMed
Greimel, E., Nehrkorn, B., Schulte-Ruether, M., Fink, G. R., Nickl-Jockschat, T., Herpertz-Dahlmann, B., … Eickhoff, S. B. (2013). Changes in grey matter development in autism spectrum disorder. Brain Structure and Function, 218(4), 929942. doi: 10.1007/s00429-012-0439-9CrossRefGoogle ScholarPubMed
Griebling, J., Minshew, N. J., Bodner, K., Libove, R., Bansal, R., Konasale, P., … Hardan, A. (2010). Dorsolateral prefrontal cortex magnetic resonance imaging measurements and cognitive performance in autism. Journal of Child Neurology, 25(7), 856863. doi: 10.1177/0883073809351313CrossRefGoogle ScholarPubMed
Groen, W. B., Buitelaar, J. K., van der Gaag, R. J., & Zwiers, M. P. (2011). Pervasive microstructural abnormalities in autism: A DTI study. Journal of Psychiatry & Neuroscience, 36(1), 3240. doi: 10.1503/jpn.090100CrossRefGoogle ScholarPubMed
Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry, 70(2), 185198. doi: 10.1001/jamapsychiatry.2013.277CrossRefGoogle ScholarPubMed
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … Statistical, A. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348351. doi: 10.1038/nature21369CrossRefGoogle ScholarPubMed
He, N., Li, F., Li, Y., Guo, L., Chen, L., Huang, X., … Gong, Q. (2015). Neuroanatomical deficits correlate with executive dysfunction in boys with attention deficit hyperactivity disorder. Neuroscience Letters, 600, 4549. doi: 10.1016/j.neulet.2015.05.062CrossRefGoogle ScholarPubMed
Hollingdale, J., Woodhouse, E., Young, S., Fridman, A., & Mandy, W. (2019). Autistic spectrum disorder symptoms in children and adolescents with attention-deficit/hyperactivity disorder: A meta-analytical review. Psychological Medicine, 18, 114. doi: 10.1017/S0033291719002368Google Scholar
Hoogman, M., Bralten, J., Hibar, D. P., Mennes, M., Zwiers, M. P., Schweren, L. S., … Franke, B. (2017). Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis. The Lancet. Psychiatry, 4(4), 310319. doi: 10.1016/S2215-0366(17)30049-4CrossRefGoogle ScholarPubMed
Hoogman, M., Muetzel, R., Guimaraes, J. P., Shumskaya, E., Mennes, M., Zwiers, M. P., … Franke, B. (2019). Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. American Journal of Psychiatry, 176(7), 531542. doi: 10.1176/appi.ajp.2019.18091033CrossRefGoogle ScholarPubMed
Hwang, S., White, S. F., Nolan, Z. T., Craig Williams, W., Sinclair, S., & Blair, R. J. R. (2015). Executive attention control and emotional responding in attention-deficit/hyperactivity disorder – A functional MRI study. NeuroImage: Clinical, 9, 545554. doi: 10.1016/j.nicl.2015.10.005CrossRefGoogle ScholarPubMed
Hyde, K. L., Samson, F., Evans, A. C., & Mottron, L. (2010). Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Human Brain Mapping, 31(4), 556566. doi: 10.1002/hbm.20887Google ScholarPubMed
Iannaccone, R., Hauser, T. U., Ball, J., Brandeis, D., Walitza, S., & Brem, S. (2015). Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. European Child & Adolescent Psychiatry, 24(10), 12791289. doi: 10.1007/s00787-015-0678-4CrossRefGoogle ScholarPubMed
Itahashi, T., Yamada, T., Nakamura, M., Watanabe, H., Yamagata, B., Jimbo, D., … Hashimoto, R. (2015). Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study. NeuroImage. Clinical, 7, 155169. doi: 10.1016/j.nicl.2014.11.019CrossRefGoogle ScholarPubMed
Jagger-Rickels, A. C., Kibby, M. Y., & Constance, J. M. (2018). Global gray matter morphometry differences between children with reading disability, ADHD, and comorbid reading disability/ADHD. Brain and Language, 185, 5466. doi: 10.1016/j.bandl.2018.08.004CrossRefGoogle ScholarPubMed
Janssen, T. W. P., Heslenfeld, D. J., Mourik, R. V., Logan, G. D., & Oosterlaan, J. (2015). Neural correlates of response inhibition in children with attention-deficit/hyperactivity disorder: A controlled version of the stop-signal task. Psychiatry Research: Neuroimaging, 233(2), 278284. doi: 10.1016/j.pscychresns.2015.07.007CrossRefGoogle ScholarPubMed
Johnston, B. A., Mwangi, B., Matthews, K., Coghill, D., Konrad, K., & Steele, J. D. (2014). Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Human Brain Mapping, 35(10), 51795189. doi: 10.1002/hbm.22542CrossRefGoogle ScholarPubMed
Kana, R. K., Keller, T. A., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks. Biological Psychiatry, 62(3), 198206. doi: 10.1016/j.biopsych.2006.08.004CrossRefGoogle ScholarPubMed
Kana, R. K., Maximo, J. O., Williams, D. L., Keller, T. A., Schipul, S. E., Cherkassky, V. L., … Just, M. A. (2015). Aberrant functioning of the theory-of-mind network in children and adolescents with autism. Molecular Autism, 6, 59. doi: 10.1186/s13229-015-0052-xCrossRefGoogle ScholarPubMed
Kana, R. K., Patriquin, M. A., Black, B. S., Channell, M. M., & Wicker, B. (2016). Altered medial frontal and superior temporal response to implicit processing of emotions in autism. Autism Research, 9(1), 5566. doi: 10.1002/aur.1496CrossRefGoogle ScholarPubMed
Kappel, V., Lorenz, R. C., Streifling, M., Renneberg, B., Lehmkuhl, U., Stroehle, A., … Beck, A. (2015). Effect of brain structure and function on reward anticipation in children and adults with attention deficit hyperactivity disorder combined subtype. Social Cognitive and Affective Neuroscience, 10(7), 945951. doi: 10.1093/scan/nsu135CrossRefGoogle ScholarPubMed
Katz, J., d'Albis, M. A., Boisgontier, J., Poupon, C., Mangin, J. F., Guevara, P., … Houenou, J. (2016). Similar white matter but opposite grey matter changes in schizophrenia and high-functioning autism. Acta Psychiatrica Scandinavica, 134(1), 3139. doi: 10.1111/acps.12579CrossRefGoogle ScholarPubMed
Kaufmann, L., Zotter, S., Pixner, S., Starke, M., Haberlandt, E., Steinmayr-Gensluckner, M., … Marksteiner, J. (2013). Brief report: CANTAB performance and brain structure in pediatric patients with Asperger syndrome. Journal of Autism and Developmental Disorders, 43(6), 14831490. doi: 10.1007/s10803-012-1686-6CrossRefGoogle ScholarPubMed
Kaya, B. S., Metin, B., Tas, Z. C., Buyukaslan, A., Soysal, A., Hatiloglu, D., & Tarhan, N. (2018). Gray matter increase in motor cortex in pediatric ADHD: A voxel-based morphometry study. Journal of Attention Disorders, 22(7), 611618. doi: 10.1177/1087054716659139CrossRefGoogle Scholar
Ke, X., Hong, S., Tang, T., Zou, B., Li, H., Hang, Y., … Liu, Y. (2008). Voxel-based morphometry study on brain structure in children with high-functioning autism. Neuroreport, 19(9), 921925. doi: 10.1097/wnr.0b013e328300edf3CrossRefGoogle Scholar
Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: Resting functional abnormalities in autism. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 82758280. doi: 10.1073/pnas.0600674103CrossRefGoogle ScholarPubMed
Kleinhans, N. M., Muller, R. A., Cohen, D. N., & Courchesne, E. (2008). Atypical functional lateralization of language in autism spectrum disorders. Brain Research, 1221, 115125. doi: 10.1016/j.brainres.2008.04.080CrossRefGoogle ScholarPubMed
Kobel, M., Bechtel, N., Specht, K., Klarhoefer, M., Weber, P., Scheffler, K., … Penner, I.-K. (2010). Structural and functional imaging approaches in attention deficit/hyperactivity disorder: Does the temporal lobe play a key role? Psychiatry Research: Neuroimaging, 183(3), 230236. doi: 10.1016/j.pscychresns.2010.03.010CrossRefGoogle ScholarPubMed
Kohls, G., Thönessen, H., Bartley, G. K., Grossheinrich, N., Fink, G. R., Herpertz-Dahlmann, B., & Konrad, K. (2014). Differentiating neural reward responsiveness in autism versus ADHD. Developmental Cognitive Neuroscience, 10, 104116. doi: 10.1016/j.dcn.2014.08.003CrossRefGoogle ScholarPubMed
Konrad, K., Neufang, S., Hanisch, C., Fink, G. R., & Herpertz-Dahlmann, B. (2006). Dysfunctional attentional networks in children with attention deficit/hyperactivity disorder: Evidence from an event-related functional magnetic resonance imaging study. Biological Psychiatry, 59(7), 643651. doi: 10.1016/j.biopsych.2005.08.013CrossRefGoogle ScholarPubMed
Kooistra, L., van der Meere, J. J., Edwards, J. D., Kaplan, B. J., Crawford, S., & Goodyear, B. G. (2010). Preliminary fMRI findings on the effects of event rate in adults with ADHD. Journal of Neural Transmission, 117(5), 655662. doi: 10.1007/s00702-010-0374-yCrossRefGoogle ScholarPubMed
Korponay, C., Dentico, D., Kral, T., Ly, M., Kruis, A., Goldman, R., … Davidson, R. J. (2017). Neurobiological correlates of impulsivity in healthy adults: Lower prefrontal gray matter volume and spontaneous eye-blink rate but greater resting-state functional connectivity in basal ganglia-thalamo-cortical circuitry. NeuroImage, 157, 288296. doi: 10.1016/j.neuroimage.2017.06.015CrossRefGoogle ScholarPubMed
Kosaka, H., Omori, M., Munesue, T., Ishitobi, M., Matsumura, Y., Takahashi, T., … Wada, Y. (2010). Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. NeuroImage, 50(4), 13571363. doi: 10.1016/j.neuroimage.2010.01.085CrossRefGoogle ScholarPubMed
Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage, 24(3), 810821. doi: 10.1016/j.neuroimage.2004.09.028CrossRefGoogle Scholar
Krall, S. C., Rottschy, C., Oberwelland, E., Bzdok, D., Fox, P. T., Eickhoff, S. B., … Konrad, K. (2015). The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Structure and Function, 220(2), 587604. doi: 10.1007/s00429-014-0803-zCrossRefGoogle ScholarPubMed
Kuiper, M. W. M., Verhoeven, E. W. M., & Geurts, H. M. (2016). The role of interstimulus interval and ‘stimulus-type’ in prepotent response inhibition abilities in people with ASD: A quantitative and qualitative review. Autism Research, 9(11), 11241141. doi: 10.1002/aur.1631CrossRefGoogle ScholarPubMed
Kumar, U., Arya, A., & Agarwal, V. (2017). Neural alterations in ADHD children as indicated by voxel-based cortical thickness and morphometry analysis. Brain and Development, 39(5), 403410. doi: 10.1016/j.braindev.2016.12.002CrossRefGoogle ScholarPubMed
Kurth, F., Narr, K. L., Woods, R. P., O'Neill, J., Alger, J. R., Caplan, R., … Levitt, J. G. (2011). Diminished gray matter within the hypothalamus in autism disorder: A potential link to hormonal effects? Biological Psychiatry, 70(3), 278282. doi: 10.1016/j.biopsych.2011.03.026CrossRefGoogle ScholarPubMed
Kwon, H., Ow, A. W., Pedatella, K. E., Lotspeich, L. J., & Reiss, A. L. (2004). Voxel-based morphometry elucidates structural neuroanatomy of high-functioning autism and Asperger syndrome. Developmental Medicine & Child Neurology, 46(11), 760764. doi: 10.1017/s0012162204001306CrossRefGoogle ScholarPubMed
Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B. D., Froehlich, A. L., Nielsen, J. A., … Lainhart, J. E. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Research, 8(1), 8293. doi: 10.1002/aur.1427CrossRefGoogle ScholarPubMed
Langen, M., Schnack, H. G., Nederveen, H., Bos, D., Lahuis, B. E., de Jonge, M. V., … Durston, S. (2009). Changes in the developmental trajectories of striatum in autism. Biological Psychiatry, 66(4), 327333. doi: 10.1016/j.biopsych.2009.03.017CrossRefGoogle ScholarPubMed
Li, X., Cao, Q., Pu, F., Li, D., Fan, Y., An, L., … Wang, Y. (2015). Abnormalities of structural covariance networks in drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Research, 231(3), 273278. doi: 10.1016/j.pscychresns.2015.01.006CrossRefGoogle ScholarPubMed
Liddle, E. B., Hollis, C., Batty, M. J., Groom, M. J., Totman, J. J., Liotti, M., … Liddle, P. F. (2011). Task-related default mode network modulation and inhibitory control in ADHD: Effects of motivation and methylphenidate. Journal of Child Psychology and Psychiatry, 52(7), 761771. doi: 10.1111/j.1469-7610.2010.02333.xCrossRefGoogle ScholarPubMed
Lim, L., Chantiluke, K., Cubillo, A. I., Smith, A. B., Simmons, A., Mehta, M. A., & Rubia, K. (2015). Disorder-specific grey matter deficits in attention deficit hyperactivity disorder relative to autism spectrum disorder. Psychological Medicine, 45(5), 965976. doi: 10.1017/s0033291714001974CrossRefGoogle ScholarPubMed
Lin, H. Y., Ni, H.-C., Lai, M.-C., Tseng, W.-Y. I., & Gau, S. S.-F. (2015). Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Molecular Autism, 6, 29. doi: 10.1186/s13229-015-0022-3CrossRefGoogle ScholarPubMed
Lin, H. Y., Tseng, W. I., Lai, M. C., Chang, Y. T., & Gau, S. S. (2017). Shared atypical brain anatomy and intrinsic functional architecture in male youth with autism spectrum disorder and their unaffected brothers. Psychological Medicine, 47(4), 639654. doi: 10.1017/S0033291716002695CrossRefGoogle ScholarPubMed
Lipszyc, J., & Schachar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society, 16(06), 10641076. doi: 10.1017/s1355617710000895CrossRefGoogle ScholarPubMed
Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., & Baron-Cohen, S. (2011). Specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. NeuroImage, 56(3), 18321838. doi: 10.1016/j.neuroimage.2011.02.067CrossRefGoogle ScholarPubMed
Ma, J., Lei, D., Jin, X., Du, X., Jiang, F., Li, F., … Shen, X. (2012). Compensatory brain activation in children with attention deficit/hyperactivity disorder during a simplified go/no-go task. Journal of Neural Transmission, 119(5), 613619. doi: 10.1007/s00702-011-0744-0CrossRefGoogle ScholarPubMed
Ma, I., van Holstein, M., Mies, G. W., Mennes, M., Buitelaar, J., Cools, R., … Scheres, A. (2016). Ventral striatal hyperconnectivity during rewarded interference control in adolescents with ADHD. Cortex, 82, 225236. doi: 10.1016/j.cortex.2016.05.021CrossRefGoogle ScholarPubMed
Maier, S., Perlov, E., Graf, E., Dieter, E., Sobanski, E., Rump, M., … Elst, L. T. V. (2015). Discrete global but no focal gray matter volume reductions in unmedicated adult patients with attention-deficit/hyperactivity disorder. Biological Psychiatry, 80(12), 905915. doi: 10.1016/j.biopsych.2015.05.012CrossRefGoogle ScholarPubMed
Martinez-Sanchis, S. (2014). Neurobiological foundations of multisensory integration in people with autism spectrum disorders: The role of the medial prefrontal cortex. Frontiers in Human Neuroscience, 8, 970. doi: 10.3389/fnhum.2014.00970Google ScholarPubMed
Massat, I., Slama, H., Villemonteix, T., Mary, A., Baijot, S., Albajara Saenz, A., … Peigneux, P. (2018). Hyperactivity in motor response inhibition networks in unmedicated children with attention deficit-hyperactivity disorder. The World Journal of Biological Psychiatry, 19(2), 101111. doi: 10.1080/15622975.2016.1237040CrossRefGoogle ScholarPubMed
McAlonan, G. M., Cheung, V., Cheung, C., Chua, S. E., Murphy, D. G. M., Suckling, J., … Ho, T. P. (2007). Mapping brain structure in attention deficit-hyperactivity disorder: A voxel-based MRI study of regional grey and white matter volume. Psychiatry Research: Neuroimaging, 154(2), 171180. doi: 10.1016/j.pscychresns.2006.09.006CrossRefGoogle ScholarPubMed
McAlonan, G. M., Daly, E., Kumari, V., Critchley, H. D., van Amelsvoort, T., Suckling, J., … Murphy, D. G. M. (2002). Brain anatomy and sensorimotor gating in Asperger's syndrome. Brain, 125, 15941606. doi: 10.1093/brain/awf150CrossRefGoogle ScholarPubMed
McAlonan, G. M., Suckling, J., Wong, N., Cheung, V., Lienenkaemper, N., Cheung, C., & Chua, S. E. (2008). Distinct patterns of grey matter abnormality in high-functioning autism and Asperger's syndrome. Journal of Child Psychology and Psychiatry, 49(12), 12871295. doi: 10.1111/j.1469-7610.2008.01933.xCrossRefGoogle ScholarPubMed
McCarthy, H., Skokauskas, N., & Frodl, T. (2014). Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: A meta-analysis. Psychological Medicine, 44(4), 869880. doi: 10.1017/s0033291713001037CrossRefGoogle ScholarPubMed
McGrath, L. M., & Stoodley, C. J. (2019). Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies. Journal of Neurodevelopmental Disorders, 11(1), 31. doi: 10.1186/s11689-019-9287-8CrossRefGoogle ScholarPubMed
Mengotti, P., D'Agostini, S., Terlevic, R., De Colle, C., Biasizzo, E., Londero, D., … Brambilla, P. (2011). Altered white matter integrity and development in children with autism: A combined voxel-based morphometry and diffusion imaging study. Brain Research Bulletin, 84(2), 189195. doi: 10.1016/j.brainresbull.2010.12.002CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214(5-6), 655667. doi: 10.1007/s00429-010-0262-0CrossRefGoogle ScholarPubMed
Miller, G. M., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110(1), 4048. doi: 10.1037//0021-843x.110.1.40CrossRefGoogle ScholarPubMed
Mitchell, S. R., Reiss, A. L., Tatusko, D. H., Ikuta, I., Kazmerski, D. B., Botti, J. A., … Kates, W. R. (2009). Neuroanatomic alterations and social and communication deficits in monozygotic twins discordant for autism disorder. American Journal of Psychiatry, 166(8), 917925. doi: 10.1176/appi.ajp.2009.08101538CrossRefGoogle ScholarPubMed
Montes, L. G. A., Ricardo-Garcell, J., de la Torre, L. B., Alcántara, H. P., García, R. B. M., Fernández-Bouzas, A., & Acosta, D. A. (2010). Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder. Journal of Psychiatry & Neuroscience, 35(4), 238246. doi: 10.1503/jpn.090099Google Scholar
Moreno-Alcázar, A., Ramos-Quiroga, J. A., Radua, J., Salavert, J., Palomar, G., Bosch, R., … Pomarol-Clotet, E. (2016). Brain abnormalities in adults with attention deficit hyperactivity disorder revealed by voxel-based morphometry. Psychiatry Research: Neuroimaging, 254, 4147. doi: 10.1016/j.pscychresns.2016.06.002.CrossRefGoogle ScholarPubMed
Mueller, S., Keeser, D., Samson, A. C., Kirsch, V., Blautzik, J., Grothe, M., … Meindl, T. (2013). Convergent findings of altered functional and structural brain connectivity in individuals with high functioning autism: A multimodal MRI study. PLoS ONE, 8(6), e67329. doi: 10.1371/journal.pone.0067329CrossRefGoogle ScholarPubMed
Murdaugh, D. L., Shinkareva, S. V., Deshpande, H. R., Wang, J., Pennick, M. R., & Kana, R. K. (2012). Differential deactivation during mentalizing and classification of autism based on default mode network connectivity. PLoS ONE, 7(11), e50064. doi: 10.1371/journal.pone.0050064CrossRefGoogle ScholarPubMed
Murphy, C. M., Christakou, A., Daly, E. M., Ecker, C., Giampietro, V., Brammer, M., … Rubia, K. (2014). Abnormal functional activation and maturation of fronto-striato-temporal and cerebellar regions during sustained attention in autism spectrum disorder. American Journal of Psychiatry, 171(10), 11071116. doi: 10.1176/appi.ajp.2014.12030352CrossRefGoogle ScholarPubMed
Nakao, T., Radua, J., Rubia, K., & Mataix-Cols, D. (2011). Gray matter volume abnormalities in ADHD: Voxel-based meta-analysis exploring the effects of age and stimulant medication. American Journal of Psychiatry, 168(11), 11541163. doi: 10.1176/appi.ajp.2011.11020281CrossRefGoogle ScholarPubMed
Ni, H. C., Lin, H. Y., Tseng, W. I., Chiu, Y. N., Wu, Y. Y., Tsai, W. C., & Gau, S. S. (2018). Neural correlates of impaired self-regulation in male youths with autism spectrum disorder: A voxel-based morphometry study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 82, 233241. doi: 10.1016/j.pnpbp.2017.11.008CrossRefGoogle ScholarPubMed
Nickl-Jockschat, T., Habel, U., Michel, T. M., Manning, J., Laird, A. R., Fox, P. T., … Eickhoff, S. B. (2012). Brain structure anomalies in autism spectrum disorder – a meta-analysis of VBM studies using anatomic likelihood estimation. Human Brain Mapping, 33(6), 14701489. doi: 10.1002/hbm.21299CrossRefGoogle ScholarPubMed
Nordahl, C. W., Lange, N., Li, D. D., Barnett, L. A., Lee, A., Buonocore, M. H., … Amaral, D. G. (2011). Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 2019520200. doi: 10.1073/pnas.1107560108CrossRefGoogle ScholarPubMed
Norman, L. J., Carlisi, C. O., Christakou, A., Chantiluke, K., Murphy, C., Simmons, A., … Rubia, K. (2017). Neural dysfunction during temporal discounting in paediatric attention-deficit/hyperactivity disorder and obsessive-compulsive disorder. Psychiatry Research: Neuroimaging, 269, 97105. doi: 10.1016/j.pscychresns.2017.09.008CrossRefGoogle ScholarPubMed
Norman, L. J., Carlisi, C., Lukito, S., Hart, H., Mataix-Cols, D., Radua, J., & Rubia, K. (2016). Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: A comparative meta-analysis. JAMA Psychiatry, 73(8), 815–825. doi: 10.1001/jamapsychiatry.2016.0700CrossRefGoogle ScholarPubMed
Onnink, A. M. H., Zwiers, M. P., Hoogman, M., Mostert, J. C., Kan, C. C., Buitelaar, J., & Franke, B. (2014). Brain alterations in adult ADHD: Effects of gender, treatment and comorbid depression. European Neuropsychopharmacology, 24(3), 397409. doi: 10.1016/j.euroneuro.2013.11.011CrossRefGoogle ScholarPubMed
Ortal, S., van de Glind, G., Johan, F., Itai, B., Nir, Y., Iliyan, I., & van den Brink, W. (2015). The role of different aspects of impulsivity as independent risk factors for substance use disorders in patients with ADHD: A review. Current Drug Abuse Review, 8(2), 119133. doi: 10.2174/1874473708666150916112913CrossRefGoogle ScholarPubMed
Overmeyer, S., Bullmore, E. T., Suckling, J., Simmons, A., Williams, S. C., Santosh, P. J., & Taylor, E. (2001). Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychological Medicine, 31(8), 14251435. doi: 10.1017/s0033291701004706CrossRefGoogle Scholar
Passarotti, A. M., Sweeney, J. A., & Pavuluri, M. N. (2010). Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. Psychiatry Research: Neuroimaging, 181(1), 3643. doi: 10.1016/j.pscychresns.2009.07.002CrossRefGoogle ScholarPubMed
Pereira, A. M., Campos, B. M., Coan, A. C., Pegoraro, L. F., de Rezende, T. J. R., Obeso, I., … Cendes, F. (2018). Differences in cortical structure and functional MRI connectivity in high functioning autism. Frontiers in Neurology, 9, 539. doi: 10.3389/fneur.2018.00539CrossRefGoogle ScholarPubMed
Peterson, B. S., Potenza, M. N., Wang, Z., Zhu, H., Martin, A., Marsh, R., … Yu, S. (2009). An fMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. American Journal of Psychiatry, 166(11), 12861294. doi: 10.1176/appi.ajp.2009.08050724CrossRefGoogle ScholarPubMed
Philip, R. C. M., Dauvermann, M. R., Whalley, H. C., Baynham, K., Lawrie, S. M., & Stanfield, A. C. (2012). A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neuroscience & Biobehavioral Reviews, 36(2), 901942. doi: 10.1016/j.neubiorev.2011.10.008CrossRefGoogle ScholarPubMed
Polanczyk, G., Willcutt, E. G., Salum, G. A., Kieling, C., & Rohde, L. A. (2014). ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. International Journal of Epidemiology, 43(2), 434442. doi: 10.1093/ije/dyt261CrossRefGoogle ScholarPubMed
Poulin-Lord, M. P., Barbeau, E. B., Soulières, I., Monchi, O., Doyon, J., Benali, H., & Mottron, L. (2014). Increased topographical variability of task-related activation in perceptive and motor associative regions in adult autistics. NeuroImage: Clinical, 4, 444453. doi: 10.1016/j.nicl.2014.02.008CrossRefGoogle ScholarPubMed
Poustka, L., Jennen-Steinmetz, C., Henze, R., Vomstein, K., Haffner, J., & Sieltjes, B. (2012). Fronto-temporal disconnectivity and symptom severity in children with autism spectrum disorder. The World Journal of Biological Psychiatry, 13(4), 269280. doi: 10.3109/15622975.2011.591824CrossRefGoogle ScholarPubMed
Prat, C. S., Stocco, A., Neuhaus, E., & Kleinhans, N. M. (2016). Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex. Neuropsychologia, 91, 268281. doi: 10.1016/j.neuropsychologia.2016.08.007CrossRefGoogle ScholarPubMed
Radeloff, D., Ciaramidaro, A., Siniatchkin, M., Hainz, D., Schlitt, S., Weber, B., … Freitag, C. M. (2014). Structural alterations of the social brain: A comparison between schizophrenia and autism. PLoS ONE, 9(9), e106539. doi: 10.1371/journal.pone.0106539CrossRefGoogle ScholarPubMed
Radua, J., Borgwardt, S., Crescini, A., Mataix-Cols, D., Meyer-Lindenberg, A., McGuire, P. K., & Fusar-Poli, P. (2012a). Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neuroscience & Biobehavioral Reviews, 36(10), 23252333. doi: 10.1016/j.neubiorev.2012.07.012CrossRefGoogle Scholar
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195(5), 393402. doi: 10.1192/bjp.bp.108.055046CrossRefGoogle ScholarPubMed
Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., & Surguladze, S. (2012b). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27(8), 605611. doi: 10.1016/j.eurpsy.2011.04.001CrossRefGoogle Scholar
Rae, C. L., Hughes, L. E., Weaver, C., Anderson, M. C., & Rowe, J. B. (2014). Selection and stopping in voluntary action: A meta-analysis and combined fMRI study. NeuroImage, 86, 381391. doi: 10.1016/j.neuroimage.2013.10.012CrossRefGoogle ScholarPubMed
Ramesh, M. G., & Rai, K. S. (2013). Region-wise gray matter volume alterations in brain of adolescents with attention deficit hyperactive disorder: A voxel based morphometric analysis. Indian Journal of Physiology and Pharmacology, 57(3), 270279. Retrieved from https://www.researchgate.net/publication/277133055Google Scholar
Rasmussen, J., Casey, B. J., van Erp, T. G., Tamm, L., Epstein, J. N., Buss, C., … Group, M. T. A. N. (2016). ADHD and cannabis use in young adults examined using fMRI of a Go/NoGo task. Brain Imaging and Behavior, 10(3), 761771. doi: 10.1007/s11682-015-9438-9CrossRefGoogle ScholarPubMed
Raznahan, A., Wallace, G. L., Antezana, L., Greenstein, D., Lenroot, R., Thurm, A., … Giedd, J. N. (2013). Compared to what? Early brain overgrowth in autism and the perils of population norms. Biological Psychiatry, 74(8), 563575. doi: 10.1016/j.biopsych.2013.03.022CrossRefGoogle ScholarPubMed
Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58(1), 19. doi: 10.1016/j.biopsych.2005.03.026CrossRefGoogle ScholarPubMed
Retico, A., Giuliano, A., Tancredi, R., Cosenza, A., Apicella, F., Narzisi, A., … Calderoni, S. (2016). The effect of gender on the neuroanatomy of children with autism spectrum disorders: A support vector machine case-control study. Molecular Autism, 7, 5. doi: 10.1186/s13229-015-0067-3CrossRefGoogle ScholarPubMed
Riddle, K., Cascio, C. J., & Woodward, N. D. (2017). Brain structure in autism: A voxel-based morphometry analysis of the Autism Brain Imaging Database Exchange (ABIDE). Brain Imaging and Behavior, 11(2), 541551. doi: 10.1007/s11682-016-9534-5CrossRefGoogle Scholar
Riedel, A., Maier, S., Ulbrich, M., Biscaldi, M., Ebert, D., Fangmeier, T., … Elst, L. T. V. (2014). No significant brain volume decreases or increases in adults with high-functioning autism spectrum disorder and above average intelligence: A voxel-based morphometric study. Psychiatry Research: Neuroimaging, 223(2), 6774. doi: 10.1016/j.pscychresns.2014.05.013CrossRefGoogle ScholarPubMed
Riva, D., Annunziata, S., Contarino, V., Erbetta, A., Aquino, D., & Bulgheroni, S. (2013). Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: A VBM-DARTEL study. Cerebellum (London, England), 12(5), 676685. doi: 10.1007/s12311-013-0469-8CrossRefGoogle ScholarPubMed
Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., & Tregellas, J. R. (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry, 6, 56. doi: 10.1186/1471-244x-6-56CrossRefGoogle ScholarPubMed
Roman-Urrestarazu, A., Lindholm, P., Moilanen, I., Kiviniemi, V., Miettunen, J., Jaaskelainen, E., … Murray, G. K. (2016). Brain structural deficits and working memory fMRI dysfunction in young adults who were diagnosed with ADHD in adolescence. European Child & Adolescent Psychiatry, 25(5), 529538. doi: 10.1007/s00787-015-0755-8CrossRefGoogle ScholarPubMed
Rubia, K. (2018). Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in Human Neuroscience, 12, 100. doi: 10.3389/fnhum.2018.00100CrossRefGoogle ScholarPubMed
Rubia, K., Alegria, A. A., Cubillo, A. I., Smith, A. B., Brammer, M. J., & Radua, J. (2014). Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Biological Psychiatry, 76(8), 616628. doi: 10.1016/j.biopsych.2013.10.016CrossRefGoogle ScholarPubMed
Rubia, K., Cubillo, A., Smith, A. B., Woolley, J., Heyman, I., & Brammer, M. J. (2010a). Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive-compulsive disorder. Human Brain Mapping, 31(2), 287299. doi: 10.1002/hbm.20864CrossRefGoogle Scholar
Rubia, K., Halari, R., Cubillo, A., Mohammad, A. M., Scott, S., & Brammer, M. (2010b). Disorder-specific inferior prefrontal hypofunction in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure conduct disorder during cognitive flexibility. Human Brain Mapping, 31(12), 18231833. doi: 10.1002/hbm.20975CrossRefGoogle Scholar
Rubia, K., Halari, R., Cubillo, A., Smith, A. B., Mohammad, A. M., Brammer, M., & Taylor, E. (2011a). Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naive boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology, 36(8), 15751586. doi: 10.1038/npp.2011.30CrossRefGoogle Scholar
Rubia, K., Halari, R., Mohammad, A. M., Taylor, E., & Brammer, M. (2011b). Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biological Psychiatry, 70(3), 255262. doi: 10.1016/j.biopsych.2011.04.018CrossRefGoogle Scholar
Rubia, K., Halari, R., Smith, A. B., Mohammad, M., Scott, S., & Brammer, M. J. (2009). Shared and disorder-specific prefrontal abnormalities in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure CD during interference inhibition and attention allocation. Journal of Child Psychology and Psychiatry, 50(6), 669678. doi: 10.1111/j.1469-7610.2008.02022.xCrossRefGoogle ScholarPubMed
Rubia, K., Smith, A. B., Brammer, M. J., Toone, B., & Taylor, E. (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. American Journal of Psychiatry, 162(6), 10671075. doi: 10.1176/appi.ajp.162.6.1067CrossRefGoogle ScholarPubMed
Saad, J. F., Griffiths, K. R., Kohn, M. R., Clarke, S., Williams, L. M., & Korgaonkar, M. S. (2017). Regional brain network organization distinguishes the combined and inattentive subtypes of attention deficit hyperactivity disorder. NeuroImage: Clinical, 15, 383390. doi: 10.1016/j.nicl.2017.05.016CrossRefGoogle ScholarPubMed
Salazar, F., Baird, G., Chandler, S., Tseng, E., O'sullivan, T., Howlin, P., … Simonoff, E. (2015). Co-occurring psychiatric disorders in preschool and elementary school-aged children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(8), 22832294. doi: 10.1007/s10803-015-2361-5CrossRefGoogle ScholarPubMed
Sasayama, D., Hayashida, A., Yamasue, H., Harada, Y., Kaneko, T., Kasai, K., … Amano, N. (2010). Neuroanatomical correlates of attention-deficit-hyperactivity disorder accounting for comorbid oppositional defiant disorder and conduct disorder. Psychiatry and Clinical Neurosciences, 64(4), 394402. doi: 10.1111/j.1440-1819.2010.02102.xCrossRefGoogle ScholarPubMed
Sato, W., Uono, S., Kochiyama, T., Yoshimura, S., Sawada, R., Kubota, Y., … Toichi, M. (2017). Structural correlates of reading the mind in the eyes in autism spectrum disorder. Frontiers in Human Neuroscience, 11, 361. doi: 10.3389/fnhum.2017.00361CrossRefGoogle ScholarPubMed
Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59(1), 716. doi: 10.1016/j.biopsych.2005.06.007CrossRefGoogle ScholarPubMed
Schulz, K. P., Bédard, A. C. V., Fan, J., Clerkin, S. M., Dima, D., Newcorn, J. H., & Halperin, J. M. (2014). Emotional bias of cognitive control in adults with childhood attention-deficit/hyperactivity disorder. NeuroImage: Clinical, 5, 19. doi: 10.1016/j.nicl.2014.05.016CrossRefGoogle ScholarPubMed
Schulz, K. P., Fan, J., Tang, C. Y., Newcorn, J. H., Buchsbaum, M. S., Cheung, A. M., & Halperin, J. M. (2004). Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: An event-related fMRI study. American Journal of Psychiatry, 161(9), 16501657. doi: 10.1176/appi.ajp.161.9.1650CrossRefGoogle Scholar
Schulz, K. P., Li, X., Clerkin, S. M., Fan, J., Berwid, O. G., Newcorn, J. H., & Halperin, J. M. (2017). Prefrontal and parietal correlates of cognitive control related to the adult outcome of attention-deficit/hyperactivity disorder diagnosed in childhood. Cortex, 90, 111. doi: 10.1016/j.cortex.2017.01.019CrossRefGoogle ScholarPubMed
Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., … Courchesne, E. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal of Neuroscience, 30(12), 44194427. doi: 10.1523/jneurosci.5714-09.2010CrossRefGoogle ScholarPubMed
Sebastian, A., Gerdes, B., Feige, B., Kloeppel, S., Lange, T., Philipsen, A., … Tuescher, O. (2012). Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD. Psychiatry Research: Neuroimaging, 202(2), 132141. doi: 10.1016/j.pscychresns.2012.02.010CrossRefGoogle ScholarPubMed
Seidman, L. J., Biederman, J., Liang, L., Valera, E. M., Monuteaux, M. C., Brown, A., … Makris, N. (2011). Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biological Psychiatry, 69(9), 857866. doi: 10.1016/j.biopsych.2010.09.053CrossRefGoogle ScholarPubMed
Sethi, A., Evelyn-Rahr, E., Dowell, N., Jain, S., Voon, V., Critchley, H. D., … Cercignani, M. (2017). Magnetization transfer imaging identifies basal ganglia abnormalities in adult ADHD that are invisible to conventional T1 weighted voxel-based morphometry. NeuroImage: Clinical, 15, 814. doi: 10.1016/j.nicl.2017.03.012CrossRefGoogle ScholarPubMed
Shafritz, K. M., Bregman, J. D., Ikuta, T., & Szeszko, P. R. (2015). Neural systems mediating decision-making and response inhibition for social and nonsocial stimuli in autism. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 60, 112120. doi: 10.1016/j.pnpbp.2015.03.001CrossRefGoogle ScholarPubMed
Shafritz, K. M., Dichter, G. S., Baranek, G. T., & Belger, A. (2008). The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biological Psychiatry, 63(10), 974980. doi: 10.1016/j.biopsych.2007.06.028CrossRefGoogle ScholarPubMed
Shang, C. Y., Sheng, C., Yang, L. K., Chou, T. L., & Gau, S. S. (2018). Differential brain activations in adult attention-deficit/hyperactivity disorder subtypes: A counting Stroop functional MRI study. Brain Imaging and Behavior, 12(3), 882890. doi: 10.1007/s11682-017-9749-0CrossRefGoogle ScholarPubMed
Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., … Rapoport, J. L. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 1964919654. doi: 10.1073/pnas.0707741104CrossRefGoogle ScholarPubMed
Shimada, K., Fujisawa, T. X., Takiguchi, S., Naruse, H., Kosaka, H., Okazawa, H., & Tomoda, A. (2015). Ethnic differences in COMT genetic effects on striatal grey matter alterations associated with childhood ADHD: A voxel-based morphometry study in a Japanese sample. The World Journal of Biological Psychiatry, 18(4), 17. doi: 10.3109/15622975.2015.1102325Google Scholar
Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., & Baird, G. (2008). Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. Journal of the American Academy of Child & Adolescent Psychiatry, 47(8), 921929. doi: 10.1097/CHI.0b013e318179964fCrossRefGoogle Scholar
Siniatchkin, M., Glatthaar, N., von Mueller, G. G., Prehn-Kristensen, A., Wolff, S., Knoechel, S., … Gerber, W.-D. (2012). Behavioural treatment increases activity in the cognitive neuronal networks in children with attention deficit/hyperactivity disorder. Brain Topography, 25(3), 332344. doi: 10.1007/s10548-012-0221-6CrossRefGoogle ScholarPubMed
Sizoo, B., van den Brink, W., Koeter, M., Gorissen van Eenige, M., van Wijngaarden-Cremers, P., & van der Gaag, R. J. (2010). Treatment seeking adults with autism or ADHD and co-morbid substance use disorder: Prevalence, risk factors and functional disability. Drug and Alcohol Dependence, 107(1), 4450. doi: 10.1016/j.drugalcdep.2009.09.003CrossRefGoogle ScholarPubMed
Smith, A. B., Taylor, E., Brammer, M., Toone, B., & Rubia, K. (2006). Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. American Journal of Psychiatry, 163(6), 10441051. doi: 10.1176/ajp.2006.163.6.1044CrossRefGoogle ScholarPubMed
Solberg, B. S., Zayats, T., Posserud, M. B., Halmoy, A., Engeland, A., Haavik, J., & Klungsoyr, K. (2019). Patterns of psychiatric comorbidity and genetic correlations provide new insights into differences between attention-deficit/hyperactivity disorder and autism spectrum disorder. Biological Psychiatry, 86(8), 587598. doi: 10.1016/j.biopsych.2019.04.021CrossRefGoogle ScholarPubMed
Solomon, M., Yoon, J. H., Ragland, J. D., Niendam, T. A., Lesh, T. A., Fairbrother, W., & Carter, C. S. (2014). The development of the neural substrates of cognitive control in adolescents with autism spectrum disorders. Biological Psychiatry, 76(5), 412421. doi: 10.1016/j.biopsych.2013.08.036CrossRefGoogle ScholarPubMed
South, M., & Rodgers, J. (2017). Sensory, emotional and cognitive contributions to anxiety in autism spectrum disorders. Frontiers in Human Neuroscience, 11, 20. doi: 10.3389/fnhum.2017.00020CrossRefGoogle ScholarPubMed
Spencer, M. D., Chura, L. R., Holt, R. J., Suckling, J., Calder, A. J., Bullmore, E. T., & Baron-Cohen, S. (2012). Failure to deactivate the default mode network indicates a possible endophenotype of autism. Molecular Autism, 3(1), 15. doi: 10.1186/2040-2392-3-15CrossRefGoogle ScholarPubMed
Spinelli, S., Joel, S., Nelson, T. E., Vasa, R. A., Pekar, J. J., & Mostofsky, S. H. (2011). Different neural patterns are associated with trials preceding inhibitory errors in children with and without attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 50(7), 705715. doi: 10.1016/j.jaac.2011.03.014CrossRefGoogle ScholarPubMed
Sripada, C. S., Kessler, D., & Angstadt, M. (2014). Lag in maturation of the brain's intrinsic functional architecture in attention-deficit/hyperactivity disorder. Proceedings of the National Academy of Sciences of the United States of America, 111(39), 1425914264. doi: 10.1073/pnas.1407787111CrossRefGoogle ScholarPubMed
StataCorp, L. P. (2015). Stata: Release 14 base reference manual. College Station, TX: Stata Press.Google Scholar
Stevens, M. C., & Haney-Caron, E. (2012). Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence. Journal of Psychiatry & Neuroscience, 37(6), 389398. doi: 10.1503/jpn.110148CrossRefGoogle ScholarPubMed
Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, G. D., Rennie, D., … Thacker, S. B. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 283(15), 20082012. doi: 10.1001/jama.283.15.2008CrossRefGoogle ScholarPubMed
Szczepanski, S. M., & Knight, R. T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83(5), 10021018. doi: 10.1016/j.neuron.2014.08.011CrossRefGoogle ScholarPubMed
Szekely, E., Schwantes-An, T. L., Justice, C. M., Sabourin, J. A., Jansen, P. R., Muetzel, R. L., … Shaw, P. (2018). Genetic associations with childhood brain growth, defined in two longitudinal cohorts. Genetic Epidemiology, 42(4), 405414. doi: 10.1002/gepi.22122CrossRefGoogle ScholarPubMed
Tamm, L., Menon, V., Ringel, J., & Reiss, A. L. (2004). Event-related fMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43(11), 14301440. doi: 10.1097/01.chi.0000140452.51205.8dCrossRefGoogle ScholarPubMed
Tegelbeckers, J., Kanowski, M., Krauel, K., Haynes, J. D., Breitling, C., Flechtner, H. H., & Kahnt, T. (2018). Orbitofrontal signaling of future reward is associated with hyperactivity in attention-deficit/hyperactivity disorder. Journal of Neuroscience, 38(30), 67796786. doi: 10.1523/jneurosci.0411-18.2018CrossRefGoogle ScholarPubMed
Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., & Poline, J.-B. (2007). Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. NeuroImage, 35(1), 105120. doi: 10.1016/j.neuroimage.2006.11.054CrossRefGoogle ScholarPubMed
Thornton, S., Bray, S., Langevin, L. M., & Dewey, D. (2018). Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder. Human Movement Science, 59, 134142. doi: 10.1016/j.humov.2018.03.018CrossRefGoogle ScholarPubMed
Toal, F., Daly, E. M., Page, L., Deeley, Q., Hallahan, B., Bloemen, O., … Murphy, D. G. M. (2010). Clinical and anatomical heterogeneity in autistic spectrum disorder: A structural MRI study. Psychological Medicine, 40(7), 11711181. doi: 10.1017/s0033291709991541CrossRefGoogle ScholarPubMed
Vaidya, C. J., Foss-Feig, J., Shook, D., Kaplan, L., Kenworthy, L., & Gaillard, W. D. (2011). Controlling attention to gaze and arrows in childhood: An fMRI study of typical development and autism spectrum disorders. Developmental Science, 14(4), 911924. doi: 10.1111/j.1467-7687.2011.01041.xCrossRefGoogle ScholarPubMed
van Dongen, E. V., von Rhein, D., O'Dwyer, L., Franke, B., Hartman, C. A., Heslenfeld, D. J., … Buitelaar, J. (2015). Distinct effects of ASD and ADHD symptoms on reward anticipation in participants with ADHD, their unaffected siblings and healthy controls: A cross-sectional study. Molecular Autism, 6, 48. doi: 10.1186/s13229-015-0043-yCrossRefGoogle ScholarPubMed
van Hulst, B. M., de Zeeuw, P., Rijks, Y., Neggers, S. F. W., & Durston, S. (2017). What to expect and when to expect it: An fMRI study of expectancy in children with ADHD symptoms. European Child & Adolescent Psychiatry, 26(5), 583590. doi: 10.1007/s00787-016-0921-7CrossRefGoogle ScholarPubMed
van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto, G. F., … Buitelaar, J. K. (2018). Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. American Journal of Psychiatry, 175(4), 359369. doi: 10.1176/appi.ajp.2017.17010100CrossRefGoogle ScholarPubMed
van Rooij, D., Hoekstra, P. J., Mennes, M., von Rhein, D., Thissen, A. J. A. M., Hestenfeld, D., … Hartman, C. A. (2015). Distinguishing adolescents with ADHD from their unaffected siblings and healthy comparison subjects by neural activation patterns during response inhibition. American Journal of Psychiatry, 172(7), 674683. doi: 10.1176/appi.ajp.2014.13121635CrossRefGoogle ScholarPubMed
van Wingen, G. A., van den Brink, W., Veltman, D. J., Schmaal, L., Dom, G., Booij, J., & Crunelle, C. L. (2013). Reduced striatal brain volumes in non-medicated adult ADHD patients with comorbid cocaine dependence. Drug and Alcohol Dependence, 131(3), 198203. doi: 10.1016/j.drugalcdep.2013.05.007CrossRefGoogle ScholarPubMed
Velasquez, F., Qin, X. A., Reilly, M. A., Neuhaus, E., Estes, A., Aylward, E., & Kleinhans, N. M. (2017). Neural correlates of emotional inhibitory control in autism spectrum disorders. Research in Developmental Disabilities, 64, 6477. doi: 10.1016/j.ridd.2017.03.008CrossRefGoogle ScholarPubMed
Via, E., Radua, J., Cardoner, N., Happe, F., & Mataix-Cols, D. (2011). Meta-analysis of gray matter abnormalities in autism spectrum disorder: Should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Archives of General Psychiatry, 68(4), 409418. doi: 10.1001/archgenpsychiatry.2011.27CrossRefGoogle Scholar
Vilgis, V., Sun, L., Chen, J., Silk, T. J., & Vance, A. (2016). Global and local grey matter reductions in boys with ADHD combined type and ADHD inattentive type. Psychiatry Research: Neuroimaging, 254, 119126. doi: 10.1016/j.pscychresns.2016.06.008CrossRefGoogle ScholarPubMed
Villemonteix, T., De Brito, S. A., Kavec, M., Baleriaux, D., Metens, T., Slama, H., … Massat, I. (2015). Grey matter volumes in treatment naive v. chronically treated children with attention deficit/hyperactivity disorder: A combined approach. European Neuropsychopharmacology, 25(8), 11181127. doi: 10.1016/j.euroneuro.2015.04.015CrossRefGoogle Scholar
Vogan, V. M., Morgan, B. R., Lee, W., Powell, T. L., Smith, M. L., & Taylor, M. J. (2014). The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: Effects of cognitive load. Journal of Neurodevelopmental Disorders, 6, 19. doi: 10.1186/1866-1955-6-19CrossRefGoogle ScholarPubMed
Waiter, G. D., Williams, J. H. G., Murray, A. D., Gilchrist, A., Perrett, D. I., & Whiten, A. (2004). A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. NeuroImage, 22(2), 619625. doi: 10.1016/j.neuroimage.2004.02.029CrossRefGoogle ScholarPubMed
Wang, J., Fu, K., Chen, L., Duan, X., Guo, X., Chen, H., … Chen, H. (2017). Increased gray matter volume and resting-state functional connectivity in somatosensory cortex and their relationship with autistic symptoms in young boys with autism spectrum disorder. Frontiers in Physiology, 8, 588. doi: 10.3389/fphys.2017.00588CrossRefGoogle ScholarPubMed
Wang, J., Jiang, T., Cao, Q., & Wang, Y. (2007). Characterizing anatomic differences in boys with attention-deficit/hyperactivity disorder with the use of deformation-based morphometry. American Journal of Neuroradiology, 28(3), 543547. Retrieved from http://www.ajnr.org/content/28/3/543.longGoogle ScholarPubMed
White, S. J., Frith, U., Rellecke, J., Al-Noor, Z., & Gilbert, S. J. (2014). Autistic adolescents show atypical activation of the brain's mentalizing system even without a prior history of mentalizing problems. Neuropsychologia, 56, 1725. doi: 10.1016/j.neuropsychologia.2013.12.013CrossRefGoogle ScholarPubMed
Willcutt, E. G., Sonuga-Barke, E. J. S., Nigg, J. T., & Sergeant, J. A. (2008). Recent developments in neuropsychological models of childhood psychiatric disorders. In Banaschewski, T. & Rohde, L. A. (Eds.), Advances in biological psychiatry (pp. 195226). Basel: Karger. Retrieved from https://www.karger.com/Article/Abstract/118526Google Scholar
Wilson, L. B., Tregellas, J. R., Hagerman, R. J., Rogers, S. J., & Rojas, D. C. (2009). A voxel-based morphometry comparison of regional gray matter between fragile X syndrome and autism. Psychiatry Research: Neuroimaging, 174(2), 138145. doi: 10.1016/j.pscychresns.2009.04.013CrossRefGoogle ScholarPubMed
Yang, Q., Huang, P., Li, C., Fang, P., Zhao, N., Nan, J., … Cui, L. B. (2018). Mapping alterations of gray matter volume and white matter integrity in children with autism spectrum disorder: Evidence from fMRI findings. Neuroreport, 29(14), 11881192. doi: 10.1097/wnr.0000000000001094CrossRefGoogle ScholarPubMed
Yang, P., Wang, P.-N., Chuang, K.-H., Jong, Y.-J., Chao, T.-C., & Wu, M.-T. (2008). Absence of gender effect on children with attention-deficit/hyperactivity disorder as assessed by optimized voxel-based morphometry. Psychiatry Research: Neuroimaging, 164(3), 245253. doi: 10.1016/j.pscychresns.2007.12.013CrossRefGoogle ScholarPubMed
Yerys, B. E., Antezana, L., Weinblatt, R., Jankowski, K. F., Strang, J., Vaidya, C. J., … Kenworthy, L. (2015). Neural correlates of set-shifting in children with autism. Autism Research, 8(4), 386397. doi: 10.1002/aur.1454CrossRefGoogle ScholarPubMed
Zamorano, F., Billeke, P., Kausel, L., Larrain, J., Stecher, X., Hurtado, J. M., … Aboitiz, F. (2017). Lateral prefrontal activity as a compensatory strategy for deficits of cortical processing in attention deficit hyperactivity disorder. Scientific Reports, 7(1), 7181. doi: 10.1038/s41598-017-07681-zCrossRefGoogle ScholarPubMed
Zhang, R., Geng, X., & Lee, T. M. C. (2017). Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis. Brain Structure and Function, 222(9), 39733990. doi: 10.1007/s00429-017-1443-xCrossRefGoogle ScholarPubMed
Figure 0

Table 1. Sample characteristics and summary findings of VBM and fMRI cognitive control studies in ADHD

Figure 1

Table 2. Sample characteristics and summary findings of VBM and fMRI cognitive control studies in ASD

Figure 2

Table 3. Characteristics of overall sample and subgroups matched on age, sex and IQ

Figure 3

Fig. 1. Brain abnormalities in the ADHD and ASD groups. Abnormalities in (a) GMV and brain activations during (b) cognitive control and (c) motor response inhibition. Rows (i) and (ii) show abnormalities in ADHD and ASD relative to TD controls. Abnormalities in ADHD v. ASD, each relative to TD controls are shown in (iii) overall samples and (iv) age-, sex- and IQ-matched subgroups. In the overall sample, shared reduced rACC/mPFC GMV (MNI coordinates: 0, 46, 12; 119 voxels), and subthreshold overactivation in ADHD and underactivation in ASD in dmPFC (MNI coordinates: −2, 34, 36; 82 voxels) were observed but did not survive sensitivity analysis. A statistical threshold of p < 0.005 with a cluster extent of 20 voxels was used in all analyses.

Figure 4

Table 4. Brain structural and functional abnormalities in ADHD relative to ASD

Figure 5

Fig. 2. Summary of consistent disorder-differentiating and shared brain abnormalities in ADHD and ASD. Findings of (a) GMV abnormalities and brain activation abnormalities during (b) cognitive control and (c) motor response inhibition. A statistical threshold of p < 0.005 with a cluster extent of 20 voxels was used in all analyses.

Supplementary material: PDF

Lukito et al. supplementary material

Lukito et al. supplementary material

Download Lukito et al. supplementary material(PDF)
PDF 2 MB