Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-05T02:59:18.673Z Has data issue: false hasContentIssue false

Short-time asymptotic expansions of semilinear evolution equations

Published online by Cambridge University Press:  07 January 2016

Matthias A. Fahrenwaldt*
Affiliation:
Institut für Mathematische Stochastik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany (fahrenw@stochastik.uni-hannover.de)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop an algebraic approach to constructing short-time asymptotic expansions of solutions of a class of abstract semilinear evolution equations. The expansions are typically valid for both the solution of the equation and its gradient. We apply a perturbation approach based on the symbolic calculus of pseudo-differential operators and heat kernel methods. The construction is explicit and can be done to arbitrary order. All results are rigorously formulated in terms of Banach algebras. As an application we obtain a novel approach to finding approximate solutions of Markovian backward stochastic differential equations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2016