Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-11T10:07:35.528Z Has data issue: false hasContentIssue false

Bifurcation from infinity for reaction–diffusion equations under nonlinear boundary conditions

Published online by Cambridge University Press:  20 March 2017

Nsoki Mavinga
Affiliation:
Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA 19081-1390, USA (mavinga@swarthmore.edu)
Rosa Pardo
Affiliation:
Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain (rpardo@mat.ucm.es)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider reaction–diffusion equations under nonlinear boundary conditions where the nonlinearities are asymptotically linear at infinity and depend on a parameter. We prove that, as the parameter crosses some critical values, a resonance-type phenomenon provides solutions that bifurcate from infinity. We characterize the bifurcated branches when they are sub- or supercritical. We obtain both Landesman–Lazer-type conditions that guarantee the existence of solutions in the resonant case and an anti-maximum principle.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2017