No CrossRef data available.
Article contents
A 2D model for the excitation of the linearly stable inertial modes of the Sun by turbulent convection
Published online by Cambridge University Press: 23 December 2024
Abstract
The newly discovered inertial modes in the Sun offer the opportunity to probe the solar convective zone down to the tachocline. While linear analysis predicts the frequencies and eigenfunctions of the modes, it gives no information about their excitation or their amplitudes. We present here a theoretical formalism for the stochastic excitation of the solar inertial modes by turbulent convection. The amplitudes predicted by our model are in complete agreement with observations, thus supporting the assumption that they are stochastically excited. Our work also uncovers a qualitative transition in the shape of the inertial mode spectrum, between m ≲ 5 where the modes are clearly resolved in frequency, and m ≳ 5 where the modes overlap. This complicates the interpretation of the high-m data, and suggests that a model for the whole shape of the power spectrum is necessary to exploit the full seismic potential of solar inertial modes.
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 19 , Symposium S365: Dynamics of Solar and Stellar Convection Zones and Atmospheres , December 2023 , pp. 225 - 229
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union