1. Introduction
We are interested in the following problem.
Problem 1.
Let k be a perfect field of characteristic not equal to 2. Let K be a finite extension of k. Let $D\in k^*$. Find all solutions to the equation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn1.png?pub-status=live)
By a solution (x, y) to Equation (1), we always mean $(x,y)\in \mathbb{A}^2(K)$ satisfying Equation (1) and xy ≠ 0.
When $k=K=\mathbb{Q}$, using a variety of methods, many authors have shown that Equation (1) has no solutions if
$D=nz^p$ for integers n and prime numbers p; see [Reference Bajolet, Dupuy, Luca and Togbe1, Reference Bennett2, Reference Cao4, Reference Dabrowski6, Reference Darmon7, Reference Savin11].
It is natural to ask for solutions of Equation (1) when k and K are not the rational field. When k and K are number fields, since Equation (1) defines a curve of genus 3, by Faltings’ theorem [Reference Faltings8], Equation (1) only has a finite number of solutions, but to find all solutions to Equation (1) is in general a difficult task. We adopt here the method of Cassels’ [Reference Cassels5] and Bremner’s [Reference Bremner3], which is effective in finding solutions to Equation (1) in all cubic extensions of the base field in many situations. It is also worth mentioning that the work of Silverman [Reference Silverman13] on the equation $x^4+y^4=D$ (and
$x^6+y^6=D$) over number fields. But Silverman’s method does not apply when finding solutions in cubic extensions of the base field. The main result of this paper is as follows:
Theorem 1. Let k be a perfect field of characteristic not equal to 2. Let $D\in k$ such that
$D\not\in \pm k^2$. Assume that
(i) every solution
$(X,y,z)\in \mathbb{A}^3(k)$ to
$X^2-y^4=Dz^4$ satisfies z = 0,
(ii) every solution
$(x,Y,z)\in \mathbb{A}^3(k)$ to
$x^4-Y^2=Dz^4$ satisfies z = 0.
If (x, y) is a solution to $D=x^4-y^4$ in a cubic extension K of k, then
(1) (if
$-1\not \in k^2$)
where\begin{equation*}K=k(\theta),\quad x=\pm \left(\dfrac{D}{s\theta}-\dfrac{s}{4}\right),\quad y= \pm \left(\dfrac{D}{s\theta}+\dfrac{s}{4}\right), \end{equation*}
$\theta^3-s^2\theta^2/8-2D^2/s^2=0$ and
$s\in k^{*}$, and
(2) (if
$-1\in k^2$)
where\begin{equation*}K=k(\theta),\quad x=\pm \left(\dfrac{\theta}{s}-\dfrac{s}{4}\right),\quad y=\pm i\left(\dfrac{\theta}{s}+\dfrac{s}{4}\right), \end{equation*}
$i=\sqrt{-1}$,
$\theta^3+s^4\theta/16+Ds^2/2=0$, and
$s\in k^{*}$.
A nice corollary of Theorem 1 is
Corollary 1. Let p be a prime number. Let D = p if $p\equiv 11$ (mod 16), and let
$D=p^3$ if
$p\equiv 3$ (mod 16). Then solutions to
$D=x^4-y^4$ in all cubic extensions of
$\mathbb{Q}(i)$ are
(1)
\begin{equation*}x=\pm \left(\dfrac{D}{s\theta}-\dfrac{s}{4}\right),\qquad y= \pm \left(\dfrac{D}{s\theta}+\dfrac{s}{4}\right),\end{equation*}
where
$\theta^3-s^2\theta^2/8-2D^2/s^2=0$ for some
$s\in \mathbb{Q}(i)^{*}$; and
(2)
\begin{equation*} x=\pm \left(\dfrac{\theta}{s}-\dfrac{s}{4}\right),\qquad y=\pm i\left(\dfrac{\theta}{s}+\dfrac{s}{4}\right), \end{equation*}
where
$\theta^3+s^4\theta/16+Ds^2/2=0$ for some
$s\in \mathbb{Q}(i)^{*}$.
Remark 1. Theorem 1 finds all possible cubic extensions K of k and solutions to $D=x^4-y^4$ in K. The defining polynomial of K,
$F_s(x)=x^3-s^2x^2/8-2D^2/s^2$ or
$F_s(x)=x^3+s^4x/16+Ds^2/2$, must be irreducible in
$k[x]$, which in general is difficult to check since the irreducibility of
$F_s(x)$ depends on s. However, if k is a number field, by Hilbert’s irreducibility theorem [Reference Serre12, Theorem 3.4.1], there exist infinitely many
$s\in k$ such that
$F_s(x)$ is irreducible in
$k[x]$ and Theorem 1 finds all solutions to
$D=x^4-y^4$ in these cases.
2. Proof of Theorem 1
We follow Cassels [Reference Cassels5]. Equation (1) can be written in the homogeneous form
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn2.png?pub-status=live)
Let $\mathcal{C}$ be the projective curve over k defined by Equation (2). Suppose that
$P=[x_1:y_1:z_1]$is a point on (2) whose coordinates generate a cubic extension K of k. If
$z_1=0$, then
$[x_1:y_1:z_1]=[\pm 1:1:0]$; therefore K = k, which is impossible. Therefore,
$z_1\neq 0$. Since
$(x_1/z_1)^4-(y_1/z_1)^4=D$ and
$|K:k|=3$, we have
$x_1/z_1,y_1/z_1\not\in k$. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn3.png?pub-status=live)
Fix an algebraic closure $\overline{k}$ of k. Let
$P_i=[x_i:y_i:z_i] \in \mathbb{P}^{2}(\overline{k})$,
$i=1,2,3$, be the Galois conjugates of P. The equation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn4.png?pub-status=live)
has a parametrization
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU5.png?pub-status=live)
Since $[x_1^2:y_1^2:z_1^2]$ satisfies Equation (4), there exist
$\lambda,\mu\in k$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn5.png?pub-status=live)
Since $z_1\neq 0$, it follows from Equation (5) that µ ≠ 0, λ ≠ 0, and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn6.png?pub-status=live)
Let $\theta=\lambda/\mu$. Then Equations (3) and (6) show that
$\theta \not \in k$. Hence,
$k(\theta)=K$. Therefore, there exists an irreducible cubic polynomial
$P(x)=ax^3+bx^2+cx+d \in k[x]$ such that
$P(\theta)=0$. In particular, ad ≠ 0. From Equation (5), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn7.png?pub-status=live)
Step 1: Consider the weighted projective curve
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn8.png?pub-status=live)
By points on $\mathcal{C}_1$, we mean the equivalence classes of points
$[X:y:z]$ in
$\mathbb{P}^2_{2,1,1}(\overline{k})$ satisfying Equation (8). Since
$x_i^2,y_i^2,y_iz_i,z_i^2$ are linearly dependent over k and
$x_i\neq 0$, there exist
$r,s,t\in \mathbb{Q}$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU6.png?pub-status=live)
for $i=1,2,3$. Consider the weighted projective curve
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn9.png?pub-status=live)
By the weighted Bézout theorem [Theorem VIII.2][Reference Mondal10], the two curves $\mathcal{C}_1$ and
$\mathcal{D}_1$ intersect at 4 points in
$\mathbb{P}_{2,1,1}^2(\overline{k})$. We know that three of these four points are
$[x_i^2:y_i:z_i]$ for
$i=1,2,3$. Let
$v_1(T)$ be the fourth point of intersection. Since the set
$\{[x_i^2:y_i:z_i]:i=1,2,3\}$ is stable under the action of
$\operatorname{Gal}(\overline{k}/k)$,
$v_1(T)$ is fixed by
$\operatorname{Gal}(\overline{k}/k)$. Therefore,
$v_1(T)$ is a k-rational point. By the assumption in Theorem 1, we have
$v_1(T)=[\pm 1:1:0]$.
$\bullet$
$v_1(T)=[1:1:0]$. Then Equation (9) gives r = 1. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU7.png?pub-status=live)
the homogeneous quartic in $l,m$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU8.png?pub-status=live)
has factors m and $P(l,m)$. Therefore, there exists
$q\in k$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn10.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU9.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn11.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU10.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn12.png?pub-status=live)
Since $a,d\neq 0$, system (11) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn13.png?pub-status=live)
$\bullet$
$v_1(T)=[-1:1:0]$. Then Equation (9) gives
$r=-1$. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU11.png?pub-status=live)
the homogeneous quartic in $l,m,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU12.png?pub-status=live)
has factors l and $P(l,m)$. Therefore, there exists
$q\in k$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn14.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU13.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn15.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU14.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn16.png?pub-status=live)
Since $a,d\neq 0$, system (15) also gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn17.png?pub-status=live)
Step 2: Consider the weighted projective curve
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn18.png?pub-status=live)
By points on $\mathcal{C}_2$, we mean the equivalence classes of points
$[x:Y:z]$ in
$\mathbb{P}^2_{1,2,1}(\overline{k})$ satisfying Equation (18). Since
$y_i^2,x_i^2,x_iz_i,z_i^2$ are linearly dependent over k and
$y_i\neq 0$, there exist
$r,s,t\in \mathbb{Q}$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU15.png?pub-status=live)
for $i=1,2,3$. Consider the weighted projective curve
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn19.png?pub-status=live)
By the weighted Bézout theorem [Theorem VIII.2][Reference Mondal10], the two curves $\mathcal{C}_2$ and
$\mathcal{D}_2$ intersect at 4 points in
$\mathbb{P}_{1,2,1}^2(\overline{k})$. We know that three of these four points are
$[x_i:y_i^2:z_i]$ for
$i=1,2,3$. Let
$v_2(T)$ be the fourth point of intersection. Since the set
$\{[x_i:y_i^2:z_i]:i=1,2,3\}$ is stable under the action of
$\operatorname{Gal}(\overline{k}/k)$,
$v_2(T)$ is fixed by
$\operatorname{Gal}(\overline{k}/k)$. Therefore,
$v_2(T)$ is a k-rational point. By the assumption in Theorem 1, we have
$v_2(T)=[1:\pm 1:0]$.
$\bullet$
$v_2(T)=[1:1:0]$. Then Equation (19) gives r = 1. We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU16.png?pub-status=live)
so that the homogeneous quartic in $l,m,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU17.png?pub-status=live)
has factors m and $P(l,m)$. Therefore, there exists
$q\in k$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn20.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU18.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn21.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU19.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn22.png?pub-status=live)
Since $a,d\neq 0$, system (21) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn23.png?pub-status=live)
$\bullet$
$v_2(T)=[1:-1:0]$. Then Equation (19) gives
$r=-1.$ We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU20.png?pub-status=live)
so that the homogeneous quartic in $l,m,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU21.png?pub-status=live)
has factors l and $P(l,m)$. Thus, there exists
$q\in k$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn24.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU22.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn25.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU23.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn26.png?pub-status=live)
System (25) also gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn27.png?pub-status=live)
It follows from (23), (27), (13) and (17) and the assumption that $D\not\in \pm k^2$ that there are only two compatible cases for
$v_1(T)$ and
$v_2(T)$.
Case 1: $v_1(T)=[1:1:0]$ and
$v_2(T)=[1:1:0]$. From (12) and (22), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU24.png?pub-status=live)
Since aD ≠ 0, we have c = 0. From (21), we have $r=s^2/4$. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU25.png?pub-status=live)
Therefore θ satisfies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn28.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn29.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn30.png?pub-status=live)
Case 2: $v_1(T)=[-1:1:0]$ and
$v_2(T)=[1:-1:0]$. This case also implies that
$-1\in k^2$. From (17) and (25), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU26.png?pub-status=live)
Since d ≠ 0, we have b = 0. Hence, from (15), we have $t=-s/4$. Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqnU27.png?pub-status=live)
Therefore, θ satisfies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn31.png?pub-status=live)
It follows from (14) and (24) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn32.png?pub-status=live)
where $i\in k$ such that
$i^2=-1\in k$. From (7) and (32), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319132549079-0295:S0013091523000706:S0013091523000706_eqn33.png?pub-status=live)
3. Proof of Corollary 1
Corollary 1 is a consequence of Theorem 1 and the following lemma due to Izadi et al. [Reference Izadi, Naghdali and Brown9].
(1) For prime numbers,
$p\equiv 3$ (mod 16), then the equations
$x^2{-}y^4={\pm} p^3z^4$ only have solutions
$X=\pm y^2$ and z = 0 in
$\mathbb{Q}(i)$.
(2) For prime numbers,
$p\equiv 11$ (mod 16), then the equations
$X^2{-}y^4={\pm} pz^4$ only have solutions
$X=\pm y^2$ and z = 0 in
$\mathbb{Q}(i)$.
Proof. See Izadi [Reference Izadi, Naghdali and Brown9, Theorems 3.2 and 3.4].
Acknowledgements
The author is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (grant number 101.04-2023.21).
Competing Interest
The author declares none.