No CrossRef data available.
Article contents
Which states can be reached from a given state by unital completely positive maps?
Published online by Cambridge University Press: 05 July 2022
Abstract
For a state $\omega$ on a C$^{*}$
-algebra $A$
, we characterize all states $\rho$
in the weak* closure of the set of all states of the form $\omega \circ \varphi$
, where $\varphi$
is a map on $A$
of the form $\varphi (x)=\sum \nolimits _{i=1}^{n}a_i^{*}xa_i,$
$\sum \nolimits _{i=1}^{n}a_i^{*}a_i=1$
($a_i\in A$
, $n\in \mathbb {N}$
). These are precisely the states $\rho$
that satisfy $\|\rho |J\|\leq \|\omega |J\|$
for each ideal $J$
of $A$
. The corresponding question for normal states on a von Neumann algebra $\mathcal {R}$
(with the weak* closure replaced by the norm closure) is also considered. All normal states of the form $\omega \circ \psi$
, where $\psi$
is a quantum channel on $\mathcal {R}$
(that is, a map of the form $\psi (x)=\sum \nolimits _ja_j^{*}xa_j$
, where $a_j\in \mathcal {R}$
are such that the sum $\sum \nolimits _ja_j^{*}a_j$
converge to $1$
in the weak operator topology) are characterized. A variant of this topic for hermitian functionals instead of states is investigated. Maximally mixed states are shown to vanish on the strong radical of a C$^{*}$
-algebra and for properly infinite von Neumann algebras the converse also holds.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 65 , Issue 3 , August 2022 , pp. 632 - 651
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1479.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1480.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1481.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1482.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1483.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1484.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1485.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1486.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1487.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1488.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1489.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1490.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1491.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1493.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221017231535417-0715:S0013091522000256:S0013091522000256_inline1494.png?pub-status=live)