Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-05T13:46:55.473Z Has data issue: false hasContentIssue false

PRICING PERISHABLE PRODUCTS WITH COMPOUND POISSON DEMANDS

Published online by Cambridge University Press:  17 May 2011

Pengfei Guo
Affiliation:
Department of Logistics and Maritime Studies, Hong Kong Polytechnic University, Hong Kong E-mail: lgtpguo@polyu.edu.hk
Zhaotong Lian
Affiliation:
Faculty of Business Administration, University of Macau, Macau E-mail: lianzt@umac.mo
Yulan Wang
Affiliation:
Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong E-mail: yulan.wang@inet.polyu.edu.hk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the dynamic pricing problem of perishable products in a system with a constant production rate. Potential demands arrive according to a compound Poisson process, and are price-sensitive. We carry out the sample path analysis of the inventory process and by using level-crossing method, we derive its stationary distribution given a pricing function. Based on the distribution, we express the average profit function. By a stochastic comparison approach, we characterize the pricing strategy given different customers willingness-to-pay functions. Finally, we provide an approximation algorithm to calculate the optimal pricing function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

References

REFERENCES

1.Ata, B. & Shneorson, S. (2006). Dynamic control of an M/M/1 service system with adjustable arrival and service rates. Management Science 52: 17781791.CrossRefGoogle Scholar
2.Aydin, G. & Ziya, S. (2008). Pricing promotional products under upselling. Manufacturing and Service Operations Management 10: 360376.CrossRefGoogle Scholar
3.Bar-Lev, S., David, P. & Stadje, W. (2005). Control policies for inventory systems with perishable items: Outsourcing and urgency classes. Probability in the Engineering and Informational Sciences 19: 309326.CrossRefGoogle Scholar
4.Bertsekas, D. (1995). Dynamic programming and optimal control, Vol. 1. Belmont, MA: Athena Scientific.Google Scholar
5.Bitran, G. & Caldentey, R. (2003). An overview of pricing models for revenue management. Manufacturing and Service Operations Management 5: 203229.CrossRefGoogle Scholar
6.Brill, H. & Posner, M. (1977). Level crossings in point processes applied to queues: Single server case. Operations Research 25: 662673.CrossRefGoogle Scholar
7.Cooper, W. & Gupta, D. (2006). Stochastic comparisons in airline revenue management. Manufacturing and Service Operations Management 8: 221234.CrossRefGoogle Scholar
8.Elmaghraby, W., Gulcu, A. & Keskinocak, P. (2004). Optimal markdown mechanisms in the presence of rational customers with multi-unit demands. Working Paper, Georgia Insitute of Technology, School of Industrial and Systems Engineering.Google Scholar
9.Elmaghraby, W. & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research overview, current practices and future directions. Management Science 49: 12871309.CrossRefGoogle Scholar
10.Fries, B. (1975). Optimal ordering policy for a perishable commodity with fixed lifetime. Operations Research 23: 4661.CrossRefGoogle Scholar
11.Gallego, G. & van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizions. Management Science 40: 9991020.CrossRefGoogle Scholar
12.Graves, S. (1982). The application of queueing theory to continuous perishable inventory systems. Management Science 28: 400406.CrossRefGoogle Scholar
13.Guo, P. & Zipkin, P. (2009). The effects of information on a queue with balking and phase-type service times. Naval Research Logistics 55: 406411.CrossRefGoogle Scholar
14.Kaspi, H. & Perry, D. (1983). Inventory system on perishable commodities. Advances in Applied Probability 15: 674685.CrossRefGoogle Scholar
15.Lariviere, M. (2006). A note on probability distributions with increasing generalized failure rates. Operations Research 54: 602604.CrossRefGoogle Scholar
16.Lian, Z. & Liu, L. (2001). An (s, S) continuous review perishable inventory system: Models and heuristics. IIE Transactions 33: 809822.CrossRefGoogle Scholar
17.Liu, L. & Lian, Z. (1999). An (s, S) continuous review model for perishable inventory. Operations Research 47: 150158.CrossRefGoogle Scholar
18.Nahmias, S. (1975). Optimal ordering policies for perishable inventory—II. Operations Research 23: 735749.CrossRefGoogle Scholar
19.Nahmias, S. (1982). Approximation techniques for several stochastic inventory models, Computers and Operations Research 30: 141158.Google Scholar
20.Nahmias, S., Perry, D. & Stafje, W. (2004). Acturial valuation of perishable inventory systems. Probability in the Engineering and Information Sciences 18: 219232.CrossRefGoogle Scholar
21.Nahmias, S., Perry, D. & Stafje, W. (2004). Perishable inventory systems with variable input and demand rates. Mathematical Methods of Operations Research 60: 155162.CrossRefGoogle Scholar
22.Neuts, M. (1981). Matrix-geometric solutions in stochastic models: An algorthmic approach. New York: Dover.Google Scholar
23.Perry, D. (1999). Analysis of a sampling control scheme for a perishable inventory system. Operations Research 47: 966973.CrossRefGoogle Scholar
24.Perry, D. & Stadje, W. (2001). Disaters in Markovian inventory systems for perishable items. Advances in Applied Probability 33: 6175.CrossRefGoogle Scholar
25.Ravichandran, N.Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand. ( 1995). European Journal of Operational Research 84: 444457.CrossRefGoogle Scholar
26.Schmidt, C. & Nahmias, S. (1985). Policies for perishable inventory. Management Science 31: 719728.CrossRefGoogle Scholar
27.Shaked, M. & Shanthikumar, J. (2006). Stochastic orders. New York: Springer-Verlag.Google Scholar
28.Stidham, S. & Weber, R. (1989). Monotonic and insensitive optimal policies for control of queues with undiscounted costs. Operations Research 87: 611625.CrossRefGoogle Scholar
29.Topkis, D. (1998). Supermodularity and complementarity. Princeton, NJ: Princeton University Press.Google Scholar
30.Weiss, H. (1980). Optimal ordering policies for continuous review perishable inventory models. Operations Research 28: 365374.CrossRefGoogle ScholarPubMed
31.Yossi, A. & Pazgal, A. (2008). Optimal pricing of seasonal products in the presence of forward-looking consumers. Manufacturing and Service Operations Management, 10: 339359.Google Scholar
32.Zhang, D. & Cooper, W. (2005). Revenue management for parallel flights with customer choice behavior. Operations Research 53: 415431.CrossRefGoogle Scholar
33.Ziya, S., Ayhan, H. & Foley, R. (2004). Relationships among three assumptions in revenue management. Operations Research 52: 804809.CrossRefGoogle Scholar