Hostname: page-component-7b9c58cd5d-bslzr Total loading time: 0.001 Render date: 2025-03-15T13:05:26.169Z Has data issue: false hasContentIssue false

LIKELIHOOD RATIO ORDERING OF PARALLEL SYSTEMS WITH HETEROGENEOUS SCALED COMPONENTS

Published online by Cambridge University Press:  05 June 2017

Jiantian Wang*
Affiliation:
School of Mathematical Sciences, Kean University, New Jersey 07083, USA E-mail: jwang@kean.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper considers stochastic comparison of parallel systems in terms of likelihood ratio order under scale models. We introduce a new order, the so-called q-larger order, and show that under certain conditions, the q-larger order between the scale vectors can imply the likelihood ratio order of parallel systems. Applications are given to the generalized gamma scale family.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

References

1.Bagnoli, M. & Bergstrom, T. (2005). Log-concave probability and its applications. Economic Theory 26: 445469.Google Scholar
2.Balakrishnan, N. & Zhao, P. (2013). Ordering properties of order statistics from heterogeneous populations: A review with an emphasis on some recent developments. Probability in the Engineering and Informational Sciences 29: 403443.Google Scholar
3.Barlow, R.E. & Proschan, F. (1975). Statistical theory of reliability and life testing: probability models. New York: Holt, Rinehart and Winston.Google Scholar
4.Bon, J.L. & Păltănea, E. (2006). Comparisons of order statistics in a random sequence to the same statistics with i.i.d. variables. ESAIM Probab. Stat. 10: 110.Google Scholar
5.Boland, P.J., El-Neweihi, E., & Proschan, F. (1994). Applications of hazard rate ordering in reliability and order statistics. Journal of Applied Probability 31: 180192.Google Scholar
6.Da, G., Ding, W., & Li, X. (2010). On hazard rate ordering of parallel systems with two independent components. Journal of Statistical Planning and Inference 140: 21482154.Google Scholar
7.Dykstra, R., Kochar, S.C., & Rojo, J. (1997). Stochastic comparisons of parallel systems of heterogeneous exponential components. Journal of Statistical Planning and Inference 65: 203211.Google Scholar
8.Khaledi, B. & Kochar, S.C. (2000). Some new results on stochastic comparisons of parallel systems. Journal of Applied Probability 37: 283291Google Scholar
9.Kochar, S.C. & Xu, M. (2007). Stochastic comparisons of parallel systems when components have proportional hazard rates. Probability in the Engineering and Informational Sciences 21: 597609.Google Scholar
10.Kundu, C., Nanda, A.K., & Hu, T. (2009). A note on reversed hazard rate of order statistics and record values. Journal of Statistical Planning and Inference 139: 12571265.Google Scholar
11.Misra, N. & Misra, A.K. (2013). On comparison of reversed hazard rates of two parallel systems comprising of independent gamma components. Statistics and Probabability Letters 83: 15671570.Google Scholar
12.Pledger, P. & Proschan, F. (1971). Comparison of order statistics and of spacings from heterogeneous distributions. In Rustagi, J.S. (ed.), Optimizing methods in statistics. New York: Academic Press, pp. 89113.Google Scholar
13.Shaked, M. & Shanthikumar, J.G. (2007). Stochastic orders. New York: Springer.Google Scholar
14.Stacy, E.W. (1962). A generalization of the gamma distribution. Annals of Mathematical Statistics 33: 11871192.Google Scholar
15.Torrado, N. & Kochar, S.C. (2015). Stochastic order relations among parallel systems from Weibull distributions. Journal of Applied Probability 52: 102116.Google Scholar
16.Zhao, P. & Balakrishnan, N. (2011). Some characterization results for parallel systems with two heterogeneous exponential components. Statistics 45: 593604.Google Scholar
17.Zhao, P. & Balakrishnan, N. (2014) A stochastic inequality for the largest order statistics from heterogeneous gamma variables. Journal of Multivariate analysis 129: 145150.Google Scholar
18.Zhao, P., Hu, Y., & Zhang, Y. (2015). Some new results on the largest order statistics from multiple-outlier gamma models. Probability in the Engineering and Informational Sciences 29(4): 597621.Google Scholar
19.Zhao, P. & Zhang, Y. (2014). On the maxima of heterogeneous gamma variables with different shape and scale parameters. Metrika 77(6): 811836.Google Scholar