Article contents
Polls, Context, and Time: A Dynamic Hierarchical Bayesian Forecasting Model for US Senate Elections
Published online by Cambridge University Press: 18 January 2022
Abstract
We present a hierarchical Dirichlet regression model with Gaussian process priors that enables accurate and well-calibrated forecasts for U.S. Senate elections at varying time horizons. This Bayesian model provides a balance between predictions based on time-dependent opinion polls and those made based on fundamentals. It also provides uncertainty estimates that arise naturally from historical data on elections and polls. Experiments show that our model is highly accurate and has a well calibrated coverage rate for vote share predictions at various forecasting horizons. We validate the model with a retrospective forecast of the 2018 cycle as well as a true out-of-sample forecast for 2020. We show that our approach achieves state-of-the art accuracy and coverage despite relying on few covariates.
- Type
- Article
- Information
- Copyright
- © The Author(s) 2022. Published by Cambridge University Press on behalf of the Society for Political Methodology
Footnotes
Edited by Jeff Gill
References
- 4
- Cited by