Hostname: page-component-6bf8c574d5-w79xw Total loading time: 0 Render date: 2025-02-21T02:44:57.386Z Has data issue: false hasContentIssue false

Time is Not A Theoretical Variable

Published online by Cambridge University Press:  04 January 2017

Nathaniel Beck*
Affiliation:
Department of Politics, New York University, 19 W. 4th St., 2nd Floor, New York, NY 10012. e-mail: nathaniel.beck@nyu.edu
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carter and Signorino (2010) (hereinafter “CS”) add another arrow, a simple cubic polynomial in time, to the quiver of the binary time series—cross-section data analyst; it is always good to have more arrows in one's quiver. Since comments are meant to be brief, I will discuss here only two important issues where I disagree: are cubic duration polynomials the best way to model duration dependence and whether we can substantively interpret duration dependence.

Type
Research Article
Copyright
Copyright © The Author 2010. Published by Oxford University Press on behalf of the Society for Political Methodology 

References

Beck, Nathaniel, and Jackman, Simon. 1998. Beyond linearity by default: Generalized additive models. American Journal of Political Science 42: 596627.Google Scholar
Beck, Nathaniel, and Jackman, Simon. 1999. Getting the mean right is a good thing: Generalized additive models. http://polmeth.wustl.edu/mediaDetail.php?docId=457.Google Scholar
Beck, Nathaniel, Katz, Jonathan, and Tucker, Richard. 1998. Taking time seriously: Time series cross section analysis with a binary dependent variable. American Journal of Political Science 42: 12601288.Google Scholar
Carter, David B., and Signorino, Curtis S. 2010. Back to the future: Modeling time dependence in binary data. Political Analysis 18: 271292.Google Scholar
Cox, David R. 1972. Regression models and life tables. Journal of the Royal Statistical Society, Series B 34: 187220.Google Scholar
Keele, Luke J. 2008. Semiparametric regression for the social sciences. New York: John Wiley & Sons.Google Scholar