Hostname: page-component-7b9c58cd5d-9k27k Total loading time: 0 Render date: 2025-03-15T18:46:51.640Z Has data issue: false hasContentIssue false

Transmission-blocking immunity to Plasmodium falciparum in malaria-immune individuals is associated with antibodies to the gamete surface protein Pfs230

Published online by Cambridge University Press:  01 November 1999

J. HEALER
Affiliation:
Institute of Cell, Animal and Population Biology, Division of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh EH 9 3JT, UK Present address: Walter and Eliza Hall Institute of Medical Research Melbourne, Australia.
D. McGUINNESS
Affiliation:
Institute of Cell, Animal and Population Biology, Division of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh EH 9 3JT, UK
R. CARTER
Affiliation:
Institute of Cell, Animal and Population Biology, Division of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh EH 9 3JT, UK
E. RILEY
Affiliation:
Institute of Cell, Animal and Population Biology, Division of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh EH 9 3JT, UK Present address: London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Malaria-immune human sera were tested for their ability to affect the infectivity of Plasmodium falciparum gametocytes to Anopheles stephensi mosquitoes. Transmission-reducing effects of the sera were associated with the presence of antibodies to the gamete surface protein, Pfs230. Enhancement of transmission, manifest as elevated numbers of oocysts relative to controls, was observed for a number of sera, but was not found to be associated with antibodies against Pfs230. These results confirm that Pfs230 is a possible candidate for inclusion in a transmission-blocking malaria vaccine.

Type
Research Article
Copyright
1999 Cambridge University Press