In Part II, we shall be concerned with applications of classical invariant theory, to statistic physics and to theta functions. Main theorem in Chapter 2 is stated as follows:
For a partition function
![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20180130113627443-0781:S0027763000006449:S0027763000006449_inline1.gif?pub-status=live)
satisfying γl ≥ 0 (l ≥ 1) and α > 0, the 2n-apolar of ξ(s)
![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20180130113627443-0781:S0027763000006449:S0027763000006449_inline2.gif?pub-status=live)
has the expansion
![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20180130113627443-0781:S0027763000006449:S0027763000006449_inline3.gif?pub-status=live)
such that βn,1 ≥ 0 (l ≥ 2). This means, for a given partition function ξ(s) with nonnegative relative probabilities, we construct a sequence of partition functions A2n (ξ(s), ξ(s))n≥1 with the same properties, which may be considered a sequence of symbolical higher derivative of ξ(s). The main theorem in Chapter 3 is stated as follows: For given theta functions φ1(z) and φ2(z) of level n1 and n2 respectively, in g variables z = (z1, z2,…, zg), then r = (r1, r2,…, rg-apolar
![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20180130113627443-0781:S0027763000006449:S0027763000006449_inline4.gif?pub-status=live)
is a theta function of level n1 + n2, and
![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20180130113627443-0781:S0027763000006449:S0027763000006449_inline5.gif?pub-status=live)