Ce travail est consacré aux groupes d’automorphismes de certaines algebres quantiques de dimension 2 ou 3. Dans la théorie classique des algebres enveloppantes, si
désigne l’algèbre de Lie de Heisenberg de dimension 3, U(
) admet l’algèbre de Weyl A1 comme seul quotient primitif de dimension 2, avec les propriétés suivantes: d’ une part tout automorphisme de A1 se relève en un automor-phisme de U(
), d’autre part U(
) admet des automorphismes non modérés (cf. [A1], [Di1], [ML]). On retrouve la même situation pour les quotients primitifs minimaux de U(sl(2)) paramétrés par C (cf. [Di2], [Jo]). En outre, dans ce cas, on dispose des plongements de Conze de ces quotients dans A1 (cf. [Di2], [Co], [Ro]); bien que les groupes d’automorphismes soient comparables, la restriction correspondant à un tel plongement est seulement définie sur le sous-groupe des automorphismes triangulaires de A1 (cf. annexe).