No CrossRef data available.
Article contents
On Picard Values of Algebroid Functions in a Neighbourhood of A Totally Disconnected Compact Set
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
1. Let E be a totally disconnected compact set in the 2-plane and Ω its complement with respect to the extended z-plane. Then Ω is a region. Let be an exhaustion of Ω satisfying the following conditions:
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1970
References
[1]
Ahlfors, L.V. and Beurling, A.: Conformal invariants and function-theoretic null sets, Acta Math., 83(1950), pp. 101–129.Google Scholar
[2]
Dufresnoy, J.: Theorie nouvelle de families complexes normales, Ann. Ec. Norm. Sup., 16(1944), pp. 1–44.Google Scholar
[3]
Matsumoto, K.: On exceptional values of meromorphic functions with the set of singularities of capacity zero, Nagoya Math. Journ., 18(1961), pp. 141–171.Google Scholar
[4]
Matsumoto, K.: Some notes on exceptional values of meromorphic functions, Nagoya Math. Journ., 22(1963), pp. 189–201.Google Scholar
[5]
Mori, A.: A note on unramified abelian covering surfaces of a closed Riemann surfaces, Journ. Math. Soc. Japan, 6(1954), pp. 162–176.Google Scholar
[6]
Noshiro, K.: Open Riemann surfaces with null boundary, Nagoya Math. Journ., 3(1951), pp. 73–79.CrossRefGoogle Scholar
[7]
Pfluger, A.: Sur l’existence de fonctions non constantes analytiques uniformes et bornées sur une surface de Riemann ouverte, C.R. Paris, 230(1950), pp. 166–168.Google Scholar
[8]
Rémoundos, G.: Extension aux fonctions algébroïdes multiformes du theoreme de M. Picard et de ses generalisations, Mem. Sc. Math., fase. 23(1927).Google Scholar
[9]
Sario, L. and Noshiro, K.: Value distribution theory, Van Nostrand, Princeton, 1966.CrossRefGoogle Scholar