1 Introduction
Lots of progress have been made recently on the log minimal model program for $3$-folds in characteristic $p>5$, see [Reference Birkar3, Reference Birkar and Waldron6, Reference Hacon and Xu12, Reference Waldron21]. One of the things that is not treated in these papers is the finiteness of the number of log minimal models. A partial answer was given in [Reference Birkar and Waldron6, Theorem 1.4]. Here we show that a stronger finiteness result (Theorem 1.2) analogous to [Reference Birkar, Cascini, Hacon and McKernan5, Corollary 1.1.5] holds on $3$-folds in $\operatorname{char}p>5$. We then give some applications of this result (Corollary 1.3).
On the second part of the paper we work with the nef and movable cone of curves and pseudo-effective divisors. First we verify that a famous theorem [Reference Boucksom, Demailly, Păun and Peternell7, Theorem 2.2] on the duality of strongly movable curves and pseudo-effective divisors hold in positive characteristic in arbitrary dimension (Theorem 1.4). We then give some applications of this result (Theorem 1.6 and Corollary 1.7). Finally we focus our attention to Batyrev’s conjecture on the structure of nef cone of curves.
Conjecture 1.1. [Reference Batyrev2, Conjecture 4.4]
Let $(X,\unicode[STIX]{x1D6E5})$ be a projective KLT pair. Then there are countably many $(K_{X}+\unicode[STIX]{x1D6E5})$-negative movable curves $C_{i}$ such that
The rays $\mathbb{R}_{{\geqslant}0}[C_{i}]$ only accumulate along the hyperplane $(K_{X}+\unicode[STIX]{x1D6E5})^{\bot }$.
This conjecture is one of the main outstanding conjecture in this direction. We prove a version of this conjecture on $3$-folds in $\operatorname{char}p>5$ (Theorem 1.8). We also give a proof of this conjecture in full generality over the field of complex numbers (Theorem 1.9). Batyrev proved this conjecture for terminal $3$-folds defined over $\mathbb{C}$. However, his proof contained an error which was later rectified by Araujo in [Reference Araujo1]. Using sophisticated tools from [Reference Birkar, Cascini, Hacon and McKernan5] she laid down a clear path toward the proof of the higher dimensional version of the conjecture. Her results were then sharpened later by Lehmann in [Reference Lehmann17] again using the tools from [Reference Birkar, Cascini, Hacon and McKernan5]. We follow the general strategy as in [Reference Lehmann17] in proving this conjecture in positive characteristic, and the finiteness of log minimal models (Theorem 1.2) becomes indispensable in this process.
The following theorem is the positive characteristic ($\operatorname{char}p>5$) analog of [Reference Birkar, Cascini, Hacon and McKernan5, Corollary 1.1.5] on $3$-folds. This result is interesting on its own and should be useful in the future.
Theorem 1.2. (Finiteness of log minimal models)
Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ which is defined over the rationals. Suppose that there is a divisor $0\leqslant \unicode[STIX]{x1D6E5}_{0}\in V$ such that $K_{X}+\unicode[STIX]{x1D6E5}_{0}$ is KLT. Let $A$ be a general ample $\mathbb{Q}$-divisor over $U$, which has no components in common with any element of $V$. Then the following hold:
(1) There are finitely many birational contractions $\unicode[STIX]{x1D719}_{i}:X{\dashrightarrow}Y_{i}$ over $U$, $1\leqslant i\leqslant m$ such that
$$\begin{eqnarray}{\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)=\mathop{\bigcup }_{i=1}^{m}{\mathcal{W}}_{i},\end{eqnarray}$$where each ${\mathcal{W}}_{i}={\mathcal{W}}_{\unicode[STIX]{x1D719}_{i},A,\unicode[STIX]{x1D70B}}(V)$ is a rational polytope. Moreover, if $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ is a log minimal model of $(X,\unicode[STIX]{x1D6E5})$ over $U$, for some $\unicode[STIX]{x1D6E5}\in {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$, then $\unicode[STIX]{x1D719}=\unicode[STIX]{x1D719}_{i}$, for some $1\leqslant i\leqslant m$.(2) There are finitely many rational maps $\unicode[STIX]{x1D713}_{j}:X{\dashrightarrow}Z_{j}$ over $U$, $1\leqslant j\leqslant n$ which partition ${\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$ into the subsets ${\mathcal{A}}_{j}={\mathcal{A}}_{\unicode[STIX]{x1D713}_{j},A,\unicode[STIX]{x1D70B}}(V)$.
(3) For every $1\leqslant i\leqslant m$ there is a $1\leqslant j\leqslant n$ and a morphism $f_{i,j}:Y_{i}\rightarrow Z_{j}$ such that ${\mathcal{W}}_{i}\subseteq \bar{{\mathcal{A}}_{j}}$.
(4) In particular, ${\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$ is a rational polytope and each $\bar{{\mathcal{A}}_{j}}$ is a finite union of rational polytopes.
A direct consequence of Theorem 1.2 is that the ring of adjoint divisors is finitely generated:
Corollary 1.3. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Fix an ample$/U$$\mathbb{Q}$-divisor $A\geqslant 0$ on $X$. Let $\unicode[STIX]{x1D6E5}_{i}=A+B_{i}$ for some $\mathbb{Q}$-divisors $B_{1},B_{2},\ldots ,B_{k}\geqslant 0$. Assume that $D_{i}=K_{X}+\unicode[STIX]{x1D6E5}_{i}$ is DLT and $\mathbb{Q}$-Cartier for all $1\leqslant i\leqslant k$. Then the adjoint ring
is a finitely generated ${\mathcal{O}}_{U}$-algebra.
Next we verify that a positive characteristic analog of [Reference Boucksom, Demailly, Păun and Peternell7, Theorem 2.2] holds in arbitrary dimension.
Theorem 1.4. Let $X$ be a projective variety defined over an algebraically closed field of arbitrary characteristic. Then the cone $\overline{\operatorname{Eff}}(X)$ of pseudo-effective divisors is dual to the cone $\overline{\operatorname{SNM}}(X)$ of strongly movable curves.
Remark 1.5. We note that this theorem is believed to be known among the experts, while the actual proof in full generality (the $\operatorname{char}p>0$ version) never appeared in any literature as far as we know. In the case when $X$ is a smooth projective variety in characteristic $p>0$, the proof of Theorem 1.4 is outlined by Fulger and Lehmann in [Reference Fulger and Lehmann11, Theorem 2.22] based on the proof of [Reference Boucksom, Demailly, Păun and Peternell7]. So if we assume the existence of resolution of singularities in characteristic $p>0$, then Theorem 1.4 will be a formal consequence of [Reference Fulger and Lehmann11, Theorem 2.22]. In particular, when $\operatorname{dim}X\leqslant 3$, Theorem 1.4 follows from Fulger and Lehmann’s result.
In our proof we verify that the proof presented in [Reference Lazarsfeld16, Theorem 11.4.19] (which does not assume resolution of singularities) works in positive characteristic with the help of Takagi’s Fujita approximation theorem [Reference Takagi19] in characteristic $p>0$.
As an application of Theorem 1.4 we give a criterion for the pseudo-effectiveness of $K_{X}$ in terms of the existence of an algebraic family of rational curves on $X$. This answers partially a question of Campana [Reference Campana8, Question 12.1] in arbitrary characteristic.
Theorem 1.6. Let $X$ be a smooth projective variety defined over an algebraically closed field of arbitrary characteristic. Then $K_{X}$ is not pseudo-effective if and only if there exists an algebraic family of $K_{X}$-negative rational curves covering a dense subset of $X$.
An immediate corollary of this result is the following sufficient condition for uniruledness in positive characteristic.
Corollary 1.7. Let $X$ be a smooth projective variety defined over an algebraically closed field of arbitrary characteristic. If $K_{X}$ is not pseudo-effective, then $X$ is uniruled.
Note that the converse of this statement is true in $\operatorname{char}0$ and false in $\operatorname{char}p>0$.
We then prove a version of Batyrev’s conjecture on the structure of nef cone of curves on $3$-folds in characteristic $p>5$.
Theorem 1.8. Let $(X,\unicode[STIX]{x1D6E5})$ be a projective DLT pair of dimension $3$ in char $p>5$. Then there are countably many $(K_{X}+\unicode[STIX]{x1D6E5})$-negative movable curves $C_{i}$ such that
The rays $\mathbb{R}_{{\geqslant}0}[C_{i}]$ only accumulate along the hyperplanes which support both $\overline{\operatorname{NM}}(X)$ and $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}$.
Finally we prove the finiteness of coextremal rays of the nef cone of curves for varieties of arbitrary dimension over $\mathbb{C}$. We use Kollár’s effective base-point free theorem and the boundedness of $\unicode[STIX]{x1D700}$-log canonical log Fano varieties (formerly known as the “BAB Conjecture”) recently proved by Birkar [Reference Birkar4]. This gives a complete proof of Batyrev’s conjecture in full generality in characteristic $0$. We note that the finiteness of coextremal rays was proved in [Reference Araujo1] for terminal $3$-folds over $\mathbb{C}$, and a weaker version of it is also proved in [Reference Lehmann17] on arbitrary dimensions over $\mathbb{C}$.
Theorem 1.9. Let $(X,\unicode[STIX]{x1D6E5}\geqslant 0)$ be a projective KLT pair over $\mathbb{C}$.
(1) There are countably many $(K_{X}+\unicode[STIX]{x1D6E5})$-negative movable curves $C_{i}$ such that
$$\begin{eqnarray}\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+\overline{\operatorname{NM}}(X)=\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+\sum \mathbb{R}_{{\geqslant}0}[C_{i}].\end{eqnarray}$$(2) For any ample $\mathbb{R}$-divisor $H\geqslant 0$
$$\begin{eqnarray}\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+\overline{\operatorname{NM}}(X)=\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}+H\geqslant 0}+\mathop{\sum }_{i=1}^{N}\mathbb{R}_{{\geqslant}0}[C_{i}].\end{eqnarray}$$
Some remarks about the paper. In writing this paper we have tried to give as much detail as possible even if the arguments are very similar to the characteristic $0$ case. This is for convenience, future reference, and to avoid any unpleasant surprises having to do with positive characteristic. The paper is organized in the following manner: 1.1 and 1.2 are proved in Section 4; 1.3, 1.5 and 1.6 are in Section 5; 1.7 is in Section 6, and finally we prove 1.8 in Section 7. In Sections 4 and 6 we work over a field of $\operatorname{char}p>5$, in Section 5 we work over fields of arbitrary characteristic, and in Section 7 we work in $\operatorname{char}0$.
2 Preliminaries
We work with $\mathbb{R}$-Cartier divisors and use standard notations and terminologies from [Reference Kollár and Mori14]. We abbreviate Kawamata log terminal (resp. purely log terminal, divisorially log terminal, and log canonical) as KLT (resp. PLT, DLT and LC). By abuse of language we also say that $K_{X}+\unicode[STIX]{x1D6E5}$ is KLT (resp. PLT, DLT and LC). A birational map $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ is called a birational contraction if $\unicode[STIX]{x1D719}$ does not extract any divisor, that is, $\unicode[STIX]{x1D719}^{-1}:Y{\dashrightarrow}X$ does not contract any divisor. A projective morphism $\unicode[STIX]{x1D70B}:X\rightarrow U$ is called a projective contraction if $f_{\ast }{\mathcal{O}}_{X}={\mathcal{O}}_{U}$. Throughout the whole paper we assume that our ground field $k$ is algebraically closed.
Definition 2.1. Let $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ be a birational contraction of normal quasiprojective varieties. Let $D$ be a $\mathbb{R}$-Cartier divisor on $X$ such that $D^{\prime }=\unicode[STIX]{x1D719}_{\ast }D$ is also $\mathbb{R}$-Cartier. We say $\unicode[STIX]{x1D719}$ is $D$-non-positive (respectively $D$-negative) if for some common resolution $p:W\rightarrow X$ and $q:W\rightarrow Y$, we can write
where $E\geqslant 0$ is $q$-exceptional (respectively $E\geqslant 0$ is $q$-exceptional and the support of $E$ contains the strict transform of the $\unicode[STIX]{x1D719}$-exceptional divisors).
Definition 2.2. Let $\unicode[STIX]{x1D70B}\,:\,X\,\rightarrow \,U$ be a projective morphism between normal quasiprojective varieties. Suppose that $K_{X}\,+\,\unicode[STIX]{x1D6E5}$ is LC and $\unicode[STIX]{x1D719}\,:\,X{\dashrightarrow}Y$ is a birational contraction of normal quasiprojective varieties over $U$ and $Y$ is projective over $U$. Set $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$.
(1) Y is a weak log canonical model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$ if $\unicode[STIX]{x1D719}$ is $(K_{X}+\unicode[STIX]{x1D6E5})$-non-positive and $K_{Y}+\unicode[STIX]{x1D6E4}$ is nef over $U$.
(2) $Y$ is a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$ if $\unicode[STIX]{x1D719}$ is $(K_{X}+\unicode[STIX]{x1D6E5})$-negative, $K_{Y}+\unicode[STIX]{x1D6E4}$ is DLT and nef over $U$, and $Y$ is $\mathbb{Q}$-factorial.
Remark 2.3. Note that our definition of log minimal model is same as the log terminal model in [Reference Birkar, Cascini, Hacon and McKernan5, Definition 3.6.7].
Definition 2.4. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective morphism of normal quasiprojective varieties and let $D$ be an $\mathbb{R}$-Cartier divisor on $X$.
(1) We say that a birational contraction $f:X{\dashrightarrow}Y$ over $U$ is a semi-ample model of $D$ over $U$ if $f$ is $D$-non-positive, $Y$ is normal and projective over $U$ and $H=f_{\ast }D$ is semi-ample over $U$.
(2) We say that a rational map $g:X{\dashrightarrow}Z$ over $U$ is the ample model for $D$ over $U$ if $Z$ is normal and projective over $U$ and there is an ample divisor $H$ over $U$ on $Z$ such that if $p:W\rightarrow X$ and $q:W\rightarrow Z$ resolve $g$, then $q$ is a contraction morphism and we may write $p^{\ast }D{\sim}_{\mathbb{R},U}q^{\ast }H+E$, where $E\geqslant 0$ and for every $B\in |p^{\ast }D/U|_{\mathbb{R}}$, then $B\geqslant E$.
Definition 2.5. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective morphism between two normal quasiprojective varieties. Let $V$ be a finite dimensional affine subspace of the real vector space $\operatorname{WDiv}_{\mathbb{R}}(X)$ of Weil divisors of $X$. Fix an $\mathbb{R}$-divisor $A\geqslant 0$ and define
Given a birational contraction $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ over $U$, define
and given a rational map $\unicode[STIX]{x1D713}:X{\dashrightarrow}Z$ over $U$, define
3 Tanaka’s Bertini-type theorem
Following is a generalization of Tanaka’s result on Bertini-type theorems in positive characteristic [Reference Tanaka20, Theorem 1]. The proof presented here is suggested by Tanaka.
Theorem 3.1. Fix $\mathbb{K}\in \{\mathbb{Q},\mathbb{R}\}$. Let $X$ be a projective variety over a field $k$ containing an infinite perfect subfield $k_{0}$ of characteristic $p>0$. We assume that log resolution exists. Let $D$ be a semi-ample $\mathbb{K}$-Cartier $\mathbb{K}$-divisor on $X$ and $Z_{1},Z_{2},\ldots ,Z_{l}$ are finitely many closed subsets of $X$. Then the following hold:
(1) If $(X,\unicode[STIX]{x1D6E5}_{1}\geqslant 0),(X,\unicode[STIX]{x1D6E5}_{2}\geqslant 0),\ldots ,(X,\unicode[STIX]{x1D6E5}_{m}\geqslant 0)$ are all KLT pairs, then there exists an effective $\mathbb{K}$-Carter $\mathbb{K}$-divisor $0\leqslant D^{\prime }{\sim}_{\mathbb{K}}D$ not containing any $Z_{j},1\leqslant j\leqslant l$ in its support such that $(X,\unicode[STIX]{x1D6E5}_{1}+D^{\prime }),(X,\unicode[STIX]{x1D6E5}_{2}+D^{\prime }),\ldots ,(X,\unicode[STIX]{x1D6E5}_{m}+D^{\prime })$ are all KLT.
(2) If $(X,\unicode[STIX]{x1D6E5}_{1}\geqslant 0),(X,\unicode[STIX]{x1D6E5}_{2}\geqslant 0),\ldots ,(X,\unicode[STIX]{x1D6E5}_{m}\geqslant 0)$ are all LC pairs, then there exists an effective $\mathbb{K}$-Carter $\mathbb{K}$-divisor $0\leqslant D^{\prime }{\sim}_{\mathbb{K}}D$ not containing any $Z_{j},1\leqslant j\leqslant l$ in its support such that $(X,\unicode[STIX]{x1D6E5}_{1}+D^{\prime }),(X,\unicode[STIX]{x1D6E5}_{2}+D^{\prime }),\ldots ,(X,\unicode[STIX]{x1D6E5}_{m}+D^{\prime })$ are all LC.
Proof. Let $f:Y\rightarrow X$ be a log resolution of the pairs $(X,\unicode[STIX]{x1D6E5}_{i}\geqslant 0)$ for all $i=1,2,\ldots ,m$ and
where $\unicode[STIX]{x1D6E4}_{i}\geqslant 0$ and $F_{i}\geqslant 0$ do not share any common component and $f_{\ast }\unicode[STIX]{x1D6E4}_{i}=\unicode[STIX]{x1D6E5}_{i}$ and $f_{\ast }F_{i}=0$, for all $i=1,2,\ldots ,m$.
First we deal with the log canonical case. Define a divisor $\unicode[STIX]{x1D6E5}_{Y}$ on $Y$ as $\unicode[STIX]{x1D6E5}_{Y}:=(f_{\ast }^{-1}(\unicode[STIX]{x1D6E5}_{1}+\unicode[STIX]{x1D6E5}_{2}+\cdots +\unicode[STIX]{x1D6E5}_{m}))_{\text{red}}+E$, where $E$ is the reduced $f$-exceptional divisor with $\operatorname{Supp}E=\operatorname{Ex}(f)$. Then $(Y,\unicode[STIX]{x1D6E5}_{Y}\geqslant 0)$ is a LC pair. By [Reference Tanaka20, Theorem 1] and its proof it follows that there exists an effective $\mathbb{K}$-divisor $0\leqslant D^{\prime }{\sim}_{\mathbb{K}}D$ not containing any $Z_{j},1\leqslant j\leqslant l$ in its support such that $(Y,\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }D^{\prime })$ is LC. From (3.1) we see that $\unicode[STIX]{x1D6E4}_{i}+f^{\ast }D^{\prime }\leqslant \unicode[STIX]{x1D6E5}_{Y}$ and thus $(Y,\unicode[STIX]{x1D6E4}_{i}+f^{\ast }D^{\prime })$ is LC, for all $i=1,2,\ldots ,m$. It then follows that $(X,\unicode[STIX]{x1D6E5}_{i}+D^{\prime })$ is LC for all $i=1,2,\ldots ,m$.
We now work with the KLT case. The divisor $mD$ is semi-ample $\mathbb{K}$-Cartier $\mathbb{K}$-divisor on $X$. Then by the log canonical case there exists an effective $\mathbb{K}$-divisor $0\leqslant D^{\prime \prime }{\sim}_{\mathbb{K}}mD$ not containing any $Z_{j},1\leqslant j\leqslant l$ in its support such that $(X,\unicode[STIX]{x1D6E5}_{i}+D^{\prime \prime })$ is LC for all $i=1,2,\ldots ,m$. Set $D^{\prime }:=(1/m)D^{\prime \prime }{\sim}_{\mathbb{K}}D$. We claim that $(X,\unicode[STIX]{x1D6E5}_{i}+D^{\prime })$ is KLT for all $i=1,2,\ldots ,m$. Since $(X,\unicode[STIX]{x1D6E5}_{i})$ is KLT, if $(X,\unicode[STIX]{x1D6E5}_{i}+D^{\prime })$ is not KLT then this will implies that $(X,\unicode[STIX]{x1D6E5}_{i}+D^{\prime \prime })$ is not LC (for $m\geqslant 2$), a contradiction. Therefore, $(X,\unicode[STIX]{x1D6E5}_{i}+D^{\prime })$ is KLT for all $i=1,2,\ldots ,m$.◻
4 Finiteness of log minimal models
In this section, we prove the finiteness of log minimal models, namely Theorem 1.2. The ideas and techniques used here are based on the paper [Reference Birkar, Cascini, Hacon and McKernan5].
Lemma 4.1. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective morphism of normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Suppose that $(X,\unicode[STIX]{x1D6E5})$ is a KLT pair, where $\unicode[STIX]{x1D6E5}$ is big over $U$.
If $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ is a weak log canonical model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$, then
(1) $\unicode[STIX]{x1D719}$ is a semi-ample model over $U$.
(2) the ample model $\unicode[STIX]{x1D713}:X{\dashrightarrow}Z$ of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$ exists, and
(3) there is a projective contraction $h:Y\rightarrow Z$ such that $K_{Y}+\unicode[STIX]{x1D6E4}{\sim}_{\mathbb{R},U}h^{\ast }H$, for some ample $\mathbb{R}$-divisor $H$ over $U$, where $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$.
Proof. Since $K_{Y}+\unicode[STIX]{x1D6E4}$ is KLT and $\unicode[STIX]{x1D6E4}$ is big, it follows from [Reference Birkar and Waldron6, Theorem 1.2] that $K_{Y}+\unicode[STIX]{x1D6E4}$ is semi-ample. Part $(2)$ and $(3)$ then follow from [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.6.6(3)].◻
Lemma 4.2. Let $(X,\unicode[STIX]{x1D6E5}\,\geqslant \,0)$ be a $3$-fold projective DLT pair in $\operatorname{char}p\,>\,5$. Then there exists a small birational morphism $\unicode[STIX]{x1D70B}:Y\rightarrow X$ from a $\mathbb{Q}$-factorial normal projective $3$-fold $Y$ such that
and $(Y,\unicode[STIX]{x1D6E5}_{Y}\geqslant 0)$ is DLT.
Proof. Since $(X,\unicode[STIX]{x1D6E5})$ is DLT, there exists a log resolution $f:X^{\prime }\rightarrow X$ of $(X,\unicode[STIX]{x1D6E5})$ such that $a(E_{i},X,\unicode[STIX]{x1D6E5})>-1$ for every $f$-exceptional divisor $E_{i}$. We can write
where $\unicode[STIX]{x1D6E4}\geqslant 0$ and $E\geqslant 0$ do not share any common component, and $f_{\ast }\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D6E5},f_{\ast }E=0$.
Let $F\geqslant 0$ be a reduced divisor with $\operatorname{Supp}F=\operatorname{Ex}(f)$. Then $(X^{\prime },\unicode[STIX]{x1D6E4}+\unicode[STIX]{x1D700}F)$ is DLT for $0<\unicode[STIX]{x1D700}\ll 1$. Furthermore, we have
By [Reference Waldron21, Corollary 1.8] we can run a terminating $(K_{X^{\prime }}+\unicode[STIX]{x1D6E4}+\unicode[STIX]{x1D700}F)$-MMP over $X$. Let $\unicode[STIX]{x1D719}:X^{\prime }{\dashrightarrow}Y$ be the corresponding minimal model over $X$, that is, $K_{Y}+\unicode[STIX]{x1D6E5}_{Y}+\unicode[STIX]{x1D700}\unicode[STIX]{x1D719}_{\ast }F$ is nef over $X$, where $K_{Y}+\unicode[STIX]{x1D6E5}_{Y}+\unicode[STIX]{x1D700}\unicode[STIX]{x1D719}_{\ast }F=\unicode[STIX]{x1D719}_{\ast }(K_{X^{\prime }}+\unicode[STIX]{x1D6E4}+\unicode[STIX]{x1D700}F)$. It is easy to see from the Negativity lemma that $\unicode[STIX]{x1D719}$ contracts all $f$-exceptional divisors, that is, $\unicode[STIX]{x1D719}_{\ast }F=0$; in particular, if $\unicode[STIX]{x1D70B}:Y\rightarrow X$ is the structure morphism, then $\unicode[STIX]{x1D70B}$ is a small birational morphism, $Y$ is $\mathbb{Q}$-factorial, $(Y,\unicode[STIX]{x1D6E5}_{Y}\geqslant 0)$ is DLT and
Remark 4.3. In the proof of the following results we use [Reference Birkar, Cascini, Hacon and McKernan5, Lemmas 3.6.12, 3.7.2, 3.7.3, 3.7.4 and 3.7.5]. Proofs of these lemmas depend on the Bertini’s theorem for base-point free linear system in characteristic $0$. However, their proofs use Bertini’s theorem in one specific way, namely, given an ample$/U$$\mathbb{Q}$-divisor $A\geqslant 0$ and finitely many LC pairs $(X,\unicode[STIX]{x1D6E5}_{i}\geqslant 0),i=1,2,\ldots ,m$, there exists an effective divisor $0\leqslant A^{\prime }{\sim}_{\mathbb{Q},U}A$ such that $(X,\unicode[STIX]{x1D6E5}_{i}+A^{\prime })$ is LC for all $i=1,2,\ldots ,m$. We note that in the following results in characteristic $p>0$ our set up is: $\unicode[STIX]{x1D70B}:X\rightarrow U$ is a projective morphism and $X$ and $U$ are both projective varieties. So for an ample$/U$$\mathbb{Q}$-divisor $A\geqslant 0$ there exists an effective divisor $0\leqslant A^{\prime }=A+l\unicode[STIX]{x1D70B}^{\ast }H{\sim}_{\mathbb{Q},U}A,l\gg 0$ such that $(X,\unicode[STIX]{x1D6E5}_{i}+A^{\prime })$ is LC for all $i$ by Theorem 3.1, where $H$ is an ample divisor on $U$. In particular, the proofs of those lemmas from [Reference Birkar, Cascini, Hacon and McKernan5] hold in our settings. In the following Lemma 4.4 we give a sketch of the proof of [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] in our settings explaining the use of Theorem 3.1 in place of Bertini’s theorem.
Lemma 4.4. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective morphism between two normal projective varieties. Assume that log resolution exists. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$, which is defined over the rationals, and let $A$ be a general ample $\mathbb{Q}$-divisor over $U$. Let $S$ be a sum of prime divisors. Suppose that there is a DLT pair $(X,\unicode[STIX]{x1D6E5}_{0})$, where $S=\lfloor \unicode[STIX]{x1D6E5}_{0}\rfloor$, and let $G\geqslant 0$ be any divisor whose support does not contain any LC centers of $(X,\unicode[STIX]{x1D6E5}_{0})$.
Then we may find a general ample $\mathbb{Q}$-divisor $A^{\prime }\geqslant 0$ over $U$, an affine subspace $V^{\prime }$ of $\operatorname{WDiv}_{\mathbb{R}}(X)$, which is defined over the rationals, and a rational affine linear isomorphism
so that:
(1) $L$ preserves $\mathbb{Q}$-linear equivalence over $U$;
(2) $L({\mathcal{L}}_{S+A}(V))$ is contained in the interior of ${\mathcal{L}}_{S+A^{\prime }}(V^{\prime })$;
(3) for any $\unicode[STIX]{x1D6E5}\in L({\mathcal{L}}_{S+A}(V))$, $K_{X}+\unicode[STIX]{x1D6E5}$ is DLT and $\lfloor \unicode[STIX]{x1D6E5}\rfloor =S$; and
(4) for any $\unicode[STIX]{x1D6E5}\in L({\mathcal{L}}_{S+A}(V))$, the support of $\unicode[STIX]{x1D6E5}$ contains the support of $G$.
Sketch of the proof.
We only explain the part where Bertini’s theorem is used in the proof of [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4], which is basically the second paragraph in [Reference Birkar, Cascini, Hacon and McKernan5, page 436]. All other arguments in the rest of the proof of [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] holds in our settings here without any change.
We basically show that we can choose ample divisors $A_{i}$ and $A^{\prime }$ as in the proof of [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] such that $(X,\unicode[STIX]{x1D6E5}+A^{\prime }-A)$ is LC, $(X,\unicode[STIX]{x1D6E5}+4/3A_{i}+A^{\prime }-A)$ is LC for all $1\leqslant i\leqslant l$ and for all $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{S+A}(V)$, and $(X,A^{\prime }+\unicode[STIX]{x1D6E5}_{0})$ is DLT.
To that end, let $\unicode[STIX]{x1D6E4}_{1},\unicode[STIX]{x1D6E4}_{2},\ldots ,\unicode[STIX]{x1D6E4}_{m}$ be the vertices of the rational polytope ${\mathcal{L}}_{S+A}(V)$. Since $(X,\unicode[STIX]{x1D6E4}_{i})$ is LC for all $1\leqslant j\leqslant m$ and $(X,\unicode[STIX]{x1D6E5}_{0})$ is DLT, by Theorem 3.1 there exists a divisor $0\leqslant A^{\prime \prime }{\sim}_{\mathbb{Q}}A$ such that $(X,\unicode[STIX]{x1D6E4}_{j}+A^{\prime \prime })$ is LC for all $1\leqslant j\leqslant m$ and the support of $A^{\prime \prime }$ does not contain any LC center of $(X,\unicode[STIX]{x1D6E5}_{0})$. Set $A^{\prime }=\unicode[STIX]{x1D700}A^{\prime \prime }$ for a rational number $\unicode[STIX]{x1D700}\in (0,1/4]$. For $0<\unicode[STIX]{x1D700}\ll 1/4$ we see that $(X,\unicode[STIX]{x1D6E4}_{j}+A^{\prime })$ is LC for all $1\leqslant j\leqslant m$ and $(X,\unicode[STIX]{x1D6E5}_{0}+A^{\prime })$ is DLT. Furthermore, since $A_{i}$’s are general ample $\mathbb{Q}$-divisors and $0<\unicode[STIX]{x1D700}\ll 1/4$, it again follows from Theorem 3.1 that $(X,\unicode[STIX]{x1D6E4}_{j}+4/3A_{i}+A^{\prime })$ is LC for all $1\leqslant j\leqslant m$ and $1\leqslant i\leqslant l$. Now for any $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{S+A}(V)$ we can write $\unicode[STIX]{x1D6E5}=\sum _{j=1}^{m}\unicode[STIX]{x1D706}_{j}\unicode[STIX]{x1D6E4}_{j}$ for some $\unicode[STIX]{x1D706}_{j}\geqslant 0$ such that $\sum _{j=1}^{m}\unicode[STIX]{x1D706}_{j}=1$. It is easy to see that convex sum of finitely many LC divisors are LC. It then follows that $(X,\unicode[STIX]{x1D6E5}+A^{\prime })$ and $(X,\unicode[STIX]{x1D6E5}+4/3A_{i}+A^{\prime })$ are both LC for all $1\leqslant i\leqslant l$ and for all $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{S+A}(V)$. In particular, we finally have $(X,\unicode[STIX]{x1D6E5}+A^{\prime }-A)$ is LC, $(X,\unicode[STIX]{x1D6E5}+4/3A_{i}+A^{\prime }-A)$ is LC for all $1\leqslant i\leqslant l$ and for all $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{S+A}(V)$, and $(X,A^{\prime }+\unicode[STIX]{x1D6E5}_{0})$ is DLT. ◻
Definition 4.5. Given an extremal ray $R\subseteq \overline{\operatorname{NE}}(X)$, we define a hyperplane
Theorem 4.6. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ which is defined over the rationals. Fix a general ample$/U$$\mathbb{Q}$-divisor $A$ on $X$. Suppose that there is a divisor $\unicode[STIX]{x1D6E5}_{0}\geqslant 0$ such that $K_{X}+\unicode[STIX]{x1D6E5}_{0}$ is KLT.
Then the set of hyperplanes $R^{\bot }$ is finite in ${\mathcal{L}}_{A}(V)$, as $R$ ranges over the set of all extremal rays of $\overline{\operatorname{NE}}(X/U)$. In particular, ${\mathcal{N}}_{A,\unicode[STIX]{x1D70B}}(V)$ is a rational polytope.
Proof. This result corresponds to [Reference Birkar, Cascini, Hacon and McKernan5, Theorem 3.11.1].
Since ${\mathcal{L}}_{A}(V)$ is compact, it is enough to prove the finiteness of $R^{\bot }$ locally in a neighborhood of a point $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{A}(V)$. Now since there is a boundary divisor $\unicode[STIX]{x1D6E5}_{0}$ such that $(X,\unicode[STIX]{x1D6E5}_{0})$ is KLT and the image of a hyperplane under linear isomorphism of affine spaces is again a hyperplane, by Lemma 4.4 we may assume that $K_{X}+\unicode[STIX]{x1D6E5}$ is KLT. Fix $\unicode[STIX]{x1D700}>0$ such that if $\unicode[STIX]{x1D6E5}^{\prime }\in {\mathcal{L}}_{A}(V)$ and $\Vert \unicode[STIX]{x1D6E5}^{\prime }-\unicode[STIX]{x1D6E5}\Vert <\unicode[STIX]{x1D700}$, then $\unicode[STIX]{x1D6E5}^{\prime }-\unicode[STIX]{x1D6E5}+A/2$ is ample over $U$. Let $R$ be an extremal ray over $U$ such that $(K_{X}+\unicode[STIX]{x1D6E5}^{\prime })\cdot R=0$ for some $\unicode[STIX]{x1D6E5}^{\prime }\in {\mathcal{L}}_{A}(V)$ with $\Vert \unicode[STIX]{x1D6E5}^{\prime }-\unicode[STIX]{x1D6E5}\Vert <\unicode[STIX]{x1D700}$. Then we have
Write $\unicode[STIX]{x1D6E5}=A+B$. Then $K_{X}+\unicode[STIX]{x1D6E5}-A/2=K_{X}+B+A/2$. By [Reference Waldron21, Theorem 1.7(3)] there are only finitely many extremal rays $R$ satisfying these properties.
Now ${\mathcal{N}}_{A,\unicode[STIX]{x1D70B}}(V)$ is clearly a closed subset of ${\mathcal{L}}_{A}(V)$. Let $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{A}(V)$. If $K_{X}+\unicode[STIX]{x1D6E5}$ is not nef$/U$, then again by [Reference Waldron21, Theorem 1.7] there exists an extremal ray $R$ of $\overline{\operatorname{NE}}(X/U)$ generated by a rational curve $\unicode[STIX]{x1D6F4}$ such that $(K_{X}+\unicode[STIX]{x1D6E5})\cdot \unicode[STIX]{x1D6F4}<0$. In particular, ${\mathcal{N}}_{A,\unicode[STIX]{x1D70B}}(V)$ is contained in the half-spaces $R^{{\geqslant}0}=\{\unicode[STIX]{x1D6E4}\in {\mathcal{L}}_{A}(V):(K_{X}+\unicode[STIX]{x1D6E4})\cdot R\geqslant 0\}$ of the hyperplanes $R^{\bot }$. Then by the previous part, there exists finitely many extremal rays $R_{1},R_{2},\ldots ,R_{n}$ of $\overline{\operatorname{NE}}(X/U)$ such that ${\mathcal{N}}_{A,\unicode[STIX]{x1D70B}}(V)=\bigcap _{i=1}^{n}R_{i}^{{\geqslant}0}$. Since $R_{i}$’s are generated by irreducible curves, the hyperplanes $R_{i}^{\bot }$’s are all rational hyperplanes, in particular, ${\mathcal{N}}_{A}(V)$ is a rational polytope.◻
Corollary 4.7. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ which is defined over the rationals. Fix a general ample$/U$$\mathbb{Q}$-divisor $A$ on $X$. Suppose that there is a divisor $\unicode[STIX]{x1D6E5}_{0}\geqslant 0$ such that $K_{X}+\unicode[STIX]{x1D6E5}_{0}$ is KLT. Let $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ be a birational contraction over $U$.
Then ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ is a rational polytope. Moreover, there are finitely many morphisms $f_{i}:Y\rightarrow Z_{i}$ over $U$, $1\leqslant i\leqslant k$, such that if $f:Y\rightarrow Z$ is any contraction over $U$ and there is an $\mathbb{R}$-divisor $D$ on $Z$, which is ample over $U$, such that $K_{Y}+\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }(K_{X}+\unicode[STIX]{x1D6E5}){\sim}_{\mathbb{R},U}f^{\ast }D$ for some $\unicode[STIX]{x1D6E5}\in {\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$, then there is an index $1\leqslant i\leqslant k$ and an isomorphism $\unicode[STIX]{x1D702}:Z_{i}\rightarrow Z$ such that $f=\unicode[STIX]{x1D702}\circ f_{i}$.
Proof. This result corresponds to [Reference Birkar, Cascini, Hacon and McKernan5, Corollary 3.11.2].
Replacing $V_{A}$ by the span of ${\mathcal{L}}_{A}(V)$ if necessary we may assume that ${\mathcal{L}}_{A}(V)$ spans $V_{A}$. By compactness, to prove that ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ is a rational polytope, we may work locally about a divisor $\unicode[STIX]{x1D6E5}\in {\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$. By [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] we may assume that $K_{X}+\unicode[STIX]{x1D6E5}$ is KLT. Then $K_{Y}+\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }(K_{X}+\unicode[STIX]{x1D6E5})$ is KLT as well. Let $C=\unicode[STIX]{x1D719}_{\ast }A$ and $W=\unicode[STIX]{x1D719}_{\ast }(V)$. Then $C$ is a big$/U$$\mathbb{Q}$-divisor on $Y$. By [Reference Birkar, Cascini, Hacon and McKernan5, Lemmas 3.7.3 and 3.7.4] there exists a rational affine linear isomorphism $L:W\rightarrow W^{\prime }$ and an ample$/U$$\mathbb{Q}$-divisor $C^{\prime }$ such that $L(\unicode[STIX]{x1D6E4})$ is contained in the interior of ${\mathcal{L}}_{C^{\prime }}(W^{\prime })$ and $L(\unicode[STIX]{x1D6F9}){\sim}_{\mathbb{Q},U}\unicode[STIX]{x1D6F9}$ for every $\unicode[STIX]{x1D6F9}\in W$. Then by Theorem 4.6, ${\mathcal{N}}_{C^{\prime },\unicode[STIX]{x1D713}}(W^{\prime })$ is a nonempty rational polytope containing $L(\unicode[STIX]{x1D6E4})$, where $\unicode[STIX]{x1D713}:Y\rightarrow U$ is the structure morphism. Therefore, ${\mathcal{N}}_{C,\unicode[STIX]{x1D713}}(W)$ is a rational polytope locally around $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$.
Consider the following resolution of $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ which is also a log resolution of $(X,\unicode[STIX]{x1D6E5})$.
Then we have
Note that $\unicode[STIX]{x1D6E5}\,\in \,{\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ if and only if $\unicode[STIX]{x1D6E4}\,=\,\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}\,\in \,{\mathcal{N}}_{C,\unicode[STIX]{x1D713}}(W)$ and $\unicode[STIX]{x1D6F9}\,-\,\unicode[STIX]{x1D6F7}\,\geqslant \,0$. Since the map $L:V\rightarrow W$ given by $\unicode[STIX]{x1D6E5}\rightarrow \unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$ is rational and linear, in a neighborhood of $\unicode[STIX]{x1D6E5}$, ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ is cut out from ${\mathcal{L}}_{A}(V)$ by finitely many half-spaces generated by affine rational hyperplanes. Therefore, by compactness, ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ is a rational polytope.
Now for any $\unicode[STIX]{x1D6E5}\in {\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ we have $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}=A^{\prime }+B^{\prime }$, where $A^{\prime }\geqslant 0$ is a big divisor on $Y$. Therefore, by perturbing $\unicode[STIX]{x1D6E4}$, from the base-point free theorem [Reference Birkar and Waldron6, Theorem 1.2] it follows that there is a contraction $g:Y\rightarrow Z$ satisfying the required conditions. The rational map $g\circ \unicode[STIX]{x1D719}:X{\dashrightarrow}Z$ is the ample model of $K_{X}+\unicode[STIX]{x1D6E5}$. Next we prove that there are only finitely many such contractions $g:Y\rightarrow Z$ corresponding to all $\unicode[STIX]{x1D6E5}\in {\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$.
For two contractions $f:Y\rightarrow Z,f_{\ast }{\mathcal{O}}_{Y}={\mathcal{O}}_{Z}$ and $f^{\prime }:Y\rightarrow Z^{\prime },f_{\ast }^{\prime }{\mathcal{O}}_{Y}={\mathcal{O}}_{Z^{\prime }}$ over $U$, there exists an isomorphism $\unicode[STIX]{x1D702}:Z\rightarrow Z^{\prime }$ satisfying $f^{\prime }=\unicode[STIX]{x1D702}\circ f$ if and only if $f$ and $f^{\prime }$ contracts exactly same curves, that is, $f(C)=\operatorname{pt}$ if and only if $f^{\prime }(C)=\operatorname{pt}$ for irreducible curves $C\subseteq X$ (see [Reference Debarre9, Proposition 1.14 and Lemma 1.15]). Let $f:Y\rightarrow Z$ be a contraction over $U$ such that
where $\unicode[STIX]{x1D6E5}\in {\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ and $D$ is an ample$/U$$\mathbb{R}$-divisor on $Z$. $\unicode[STIX]{x1D6E4}$ belongs to the interior of a unique face $G$ of ${\mathcal{N}}_{C,\unicode[STIX]{x1D713}}(W)$. Let $\unicode[STIX]{x1D6E4}_{1},\unicode[STIX]{x1D6E4}_{2},\ldots ,\unicode[STIX]{x1D6E4}_{k}$ be the vertices of the $G$. Write $\unicode[STIX]{x1D6E4}=\sum _{j=1}^{k}\unicode[STIX]{x1D706}_{j}\unicode[STIX]{x1D6E4}_{j}$, where $\sum _{j=1}^{k}\unicode[STIX]{x1D706}_{j}=1$ and $\unicode[STIX]{x1D706}_{j}\geqslant 0$ for all $j=1,2,\ldots ,k$. Since $\unicode[STIX]{x1D6E4}$ is contained in the interior of $G$, for any given (fixed) index $i$, we can choose $\unicode[STIX]{x1D706}_{i}>0$ in $\unicode[STIX]{x1D6E4}=\sum _{j=1}^{k}\unicode[STIX]{x1D706}_{j}\unicode[STIX]{x1D6E4}_{j}$. Let $C\subseteq Y$ be a curve contracted by $f$, then $0=(K_{Y}+\unicode[STIX]{x1D6E4})\cdot C=\sum _{j=1}^{k}\unicode[STIX]{x1D706}_{j}(K_{Y}+\unicode[STIX]{x1D6E4}_{j})\cdot C\geqslant 0$. This implies that $\unicode[STIX]{x1D706}_{i}(K_{Y}+\unicode[STIX]{x1D6E4}_{i})\cdot C=0$, that is, $(K_{Y}+\unicode[STIX]{x1D6E4}_{i})\cdot C=0$, since $\unicode[STIX]{x1D706}_{i}\neq 0$. Therefore, if $C$ is contracted by $f$, then $(K_{Y}+\unicode[STIX]{x1D6E4}_{j})\cdot C=0$ for all $j=1,2,\ldots ,k$. Conversely, if $C$ is a curve on $Y$ such that $(K_{Y}+\unicode[STIX]{x1D6E4}_{j})\cdot C=0$ for all $j=1,2,\ldots ,k$, then clearly $(K_{Y}+\unicode[STIX]{x1D6E4})\cdot C=0$, and hence $C$ is contracted by $f$. Therefore, the curves contacted by $f$ are uniquely determined by $G$. Now $\unicode[STIX]{x1D6E5}$ is contained in the interior of a unique face $F$ of ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ and $G$ is determined by $F$. But since ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ is a rational polytope it has only finitely many faces.◻
Corollary 4.8. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ which is defined over the rationals. Fix a general ample$/U$$\mathbb{Q}$-divisor $A\geqslant 0$ on $X$. Suppose that there is a divisor $\unicode[STIX]{x1D6E5}_{0}\geqslant 0$ such that $K_{X}+\unicode[STIX]{x1D6E5}_{0}$ is KLT. Let $f:X\rightarrow Z$ be a morphism over $U$ such that $\unicode[STIX]{x1D6E5}_{0}\in {\mathcal{L}}_{A}(V)$ and $K_{X}+\unicode[STIX]{x1D6E5}_{0}{\sim}_{\mathbb{R},U}f^{\ast }H$, where $H$ is an ample divisor over $U$. Let $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ be a birational contraction over $Z$.
Then there is a neighborhood $P_{0}$ of $\unicode[STIX]{x1D6E5}_{0}$ in ${\mathcal{L}}_{A}(\unicode[STIX]{x1D6E5})$ such that for all $\unicode[STIX]{x1D6E5}\in P_{0}$, $\unicode[STIX]{x1D719}$ is a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $Z$ if and only if $\unicode[STIX]{x1D719}$ is a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$.
Proof. This result corresponds to [Reference Birkar, Cascini, Hacon and McKernan5, Corollary 3.11.3].
By Theorem 4.6 there exists finitely many extremal rays $R_{1},R_{2},\ldots ,R_{k}$ of $\overline{\operatorname{NE}}(Y/U)$ such that if $K_{Y}+\unicode[STIX]{x1D6E4}=K_{Y}+\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$ is not nef over $U$ for some $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{A}(V)$, then it is negative on one of these rays. If $\unicode[STIX]{x1D6E4}_{0}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}_{0}$, then we may write
where $g:Y\rightarrow Z$ is the structure morphism.
Claim. If $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{A}(V)$ is sufficiently close to $\unicode[STIX]{x1D6E5}_{0}$ and $(K_{Y}+\unicode[STIX]{x1D6E4})\cdot R_{i_{0}}=\unicode[STIX]{x1D719}_{\ast }(K_{X}+\unicode[STIX]{x1D6E5})\cdot R_{i_{0}}<0$ for some $i_{0}\in \{1,2,\ldots ,k\}$, then $(K_{Y}+\unicode[STIX]{x1D6E4}_{0})\cdot R_{i_{0}}=\unicode[STIX]{x1D719}_{\ast }(K_{X}+\unicode[STIX]{x1D6E5}_{0})\cdot R_{i_{0}}=0$.
Proof of the claim.
On the contrary assume that $(K_{Y}+\unicode[STIX]{x1D6E4}_{0})\cdot R_{i_{0}}>0$. Let $\unicode[STIX]{x1D6FC}=\frac{1}{2}(K_{Y}+\unicode[STIX]{x1D6E4}_{0})\cdot R_{i_{0}}>0$. Then $(K_{Y}+\unicode[STIX]{x1D6E4}_{0})\cdot R_{i_{0}}>\unicode[STIX]{x1D6FC}$. Let $\unicode[STIX]{x1D6E4}^{\prime }=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}^{\prime }$ for some $\unicode[STIX]{x1D6E5}^{\prime }\in {\mathcal{L}}_{A}(V)$ such that $K_{Y}+\unicode[STIX]{x1D6E4}^{\prime }$ is LC. Then by [Reference Waldron21, Theorem 1.7] we have $(K_{Y}+\unicode[STIX]{x1D6E4}^{\prime })\cdot R_{i_{0}}\geqslant -6$. Choose $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{A}(V)$ such that $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$ lies on the line segment joining $\unicode[STIX]{x1D6E4}_{0}$ and $\unicode[STIX]{x1D6E4}^{\prime }$, that is, $\unicode[STIX]{x1D6E4}=r\unicode[STIX]{x1D6E4}_{0}+s\unicode[STIX]{x1D6E4}^{\prime }$ for some $r\geqslant 0$ and $s>0$ satisfying $r+s=1$. Then
This is a contradiction. Therefore, if $\unicode[STIX]{x1D6E5}$ is sufficiently close to $\unicode[STIX]{x1D6E5}_{0}$ then $(K_{Y}+\unicode[STIX]{x1D6E4})\cdot R_{i_{0}}<0$ implies that $(K_{Y}+\unicode[STIX]{x1D6E4}_{0})\cdot R_{i_{0}}=0$.◻
In other words, there exists a neighborhood $P_{0}$ of $\unicode[STIX]{x1D6E5}_{0}$ in ${\mathcal{L}}_{A}(V)$ such that if $\unicode[STIX]{x1D6E5}\in P_{0}$ and $K_{Y}+\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }(K_{X}+\unicode[STIX]{x1D6E5})$ is not nef over $U$, then $(K_{Y}+\unicode[STIX]{x1D6E4})\cdot R_{i_{0}}<0$ for some $i_{0}\in \{1,2,\ldots ,k\}$ and $R_{i_{0}}$ is extremal over $Z$ (otherwise $(K_{Y}+\unicode[STIX]{x1D6E4}_{0})\cdot R_{i_{0}}>0$), and consequently $K_{Y}+\unicode[STIX]{x1D6E4}$ is not nef over $Z$. Contra-positively, if $\unicode[STIX]{x1D719}$ is a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $Z$, then it is a log minimal model over $U$. The other direction is obvious.◻
Proposition 4.9. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ which is defined over the rationals. Fix a general ample$/U$$\mathbb{Q}$-divisor $A$ on $X$. Let ${\mathcal{C}}\subseteq {\mathcal{L}}_{A}(V)$ be a rational polytope such that if $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$, then $K_{X}+\unicode[STIX]{x1D6E5}$ is KLT.
Then there are finitely many rational maps $\unicode[STIX]{x1D719}_{i}\,:\,X{\dashrightarrow}X_{i}$ over $U\!$, $1\,\leqslant \,i\,\leqslant \,k$, with the property that if $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$, then there is an index $1\leqslant j\leqslant k$ such that $\unicode[STIX]{x1D719}_{j}$ is a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$.
Remark 4.10. This proposition is proved in [Reference Birkar and Waldron6, Theorem 1.4] with the additional hypothesis that $X$ is $\mathbb{Q}$-factorial. One can conceivably prove the above statement using [Reference Birkar and Waldron6, Theorem 1.4] by going to a $\mathbb{Q}$-factorization of $X$. However, we take a different approach here, we use the techniques of [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 7.1] which fits better with rest of the paper.
Proof of Proposition 4.9.
Replacing $V_{A}$ by the span of ${\mathcal{C}}$ if necessary we may assume that ${\mathcal{C}}$ spans $V_{A}$. We proceed by induction on the dimension of ${\mathcal{C}}$.
First assume that $\operatorname{dim}{\mathcal{C}}=0$. Then ${\mathcal{C}}=\{\unicode[STIX]{x1D6E5}_{0}\}$ for some $\unicode[STIX]{x1D6E5}_{0}\in {\mathcal{L}}_{A}(V)$. If $\unicode[STIX]{x1D6E5}_{0}\in {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$, then by [Reference Birkar3, Theorem 1.2] there exists a log minimal model $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y/U$ for $K_{X}+\unicode[STIX]{x1D6E5}_{0}$. By induction assume that the statement is true for any such rational polytope ${\mathcal{C}}^{\prime }$ with $\operatorname{dim}{\mathcal{C}}^{\prime }<\operatorname{dim}{\mathcal{C}}$.
Now we prove the statement assuming that there is a divisor $\unicode[STIX]{x1D6E5}_{0}\in {\mathcal{C}}$ such that $K_{X}+\unicode[STIX]{x1D6E5}_{0}{\sim}_{\mathbb{R},U}0$. Let $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$ be a divisor such that $\unicode[STIX]{x1D6E5}\neq \unicode[STIX]{x1D6E5}_{0}$. Then there exists a divisor $\unicode[STIX]{x1D6E5}^{\prime }$ on one of the faces of ${\mathcal{C}}$ such that
for some $0<\unicode[STIX]{x1D706}\leqslant 1$.
We have
Therefore, $\unicode[STIX]{x1D6E5}\in {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$ if and only if $\unicode[STIX]{x1D6E5}^{\prime }\in {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$, and by [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.6.9] $K_{X}+\unicode[STIX]{x1D6E5}$ and $K_{X}+\unicode[STIX]{x1D6E5}^{\prime }$ have same log minimal models over $U$. Since ${\mathcal{C}}$ is a rational polytope, it has finitely many faces each of which are rational polytope themselves; therefore, by induction we are done.
Now we prove the general case. Applying [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] we may assume that ${\mathcal{C}}$ is contained in the interior of ${\mathcal{L}}_{A}(V)$. Note that ${\mathcal{C}}\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$ is compact (as ${\mathcal{L}}_{A}(V)$ is compact and ${\mathcal{C}}\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}$ is closed). So it is sufficient to prove the statement locally in a neighborhood of a divisor $\unicode[STIX]{x1D6E5}_{0}\in {\mathcal{C}}\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$.
Let $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y/U$ be a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}_{0}$ and $\unicode[STIX]{x1D6E4}_{0}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}_{0}$. Let ${\mathcal{C}}_{0}\subseteq {\mathcal{L}}_{A}(V)$ be a neighborhood around $\unicode[STIX]{x1D6E5}$, which is also a rational polytope. Since $\unicode[STIX]{x1D719}$ is $(K_{X}+\unicode[STIX]{x1D6E5}_{0})$-negative, by shirking ${\mathcal{C}}_{0}$ (without changing its dimension) around $\unicode[STIX]{x1D6E5}_{0}$ we may assume that $a(F,K_{X}+\unicode[STIX]{x1D6E5})<a(F,K_{Y}+\unicode[STIX]{x1D6E5})$ for all $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}_{0}$ and for all $\unicode[STIX]{x1D719}$-exceptional divisors $F$. Note that $K_{Y}+\unicode[STIX]{x1D6E4}_{0}$ is KLT and $Y$ is $\mathbb{Q}$-factorial. Since KLT is an open condition, all nearby divisors of $\unicode[STIX]{x1D6E4}_{0}$ in $Y$ are also KLT. Therefore, by shrinking ${\mathcal{C}}_{0}$ further around $\unicode[STIX]{x1D6E5}_{0}$ we may assume that $K_{Y}+\unicode[STIX]{x1D6E4}$ is KLT for all $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}_{0}$, where $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$.
Replacing ${\mathcal{C}}$ by ${\mathcal{C}}_{0}$ we may assume that the rational polytope ${\mathcal{C}}^{\prime }=\unicode[STIX]{x1D719}_{\ast }({\mathcal{C}})$ is contained in ${\mathcal{L}}_{\unicode[STIX]{x1D719}_{\ast }A}(W)$, where $W=\unicode[STIX]{x1D719}_{\ast }V$. Note that $\unicode[STIX]{x1D719}_{\ast }A$ is not an ample divisor, however it is a big $\mathbb{Q}$-divisor on $Y$. By [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.3] there exists a rational affine linear isomorphism $L:W\rightarrow V^{\prime }$ on $Y$ and a general ample$/U$$\mathbb{Q}$-divisor $A^{\prime }$ on $Y$ such that $L({\mathcal{C}}^{\prime })\subseteq {\mathcal{L}}_{A^{\prime }}(V^{\prime })$, $L(\unicode[STIX]{x1D6E4}){\sim}_{\mathbb{Q},U}\unicode[STIX]{x1D6E4}$ for all $\unicode[STIX]{x1D6E4}\in {\mathcal{C}}^{\prime }$ and $K_{Y}+\unicode[STIX]{x1D6E4}$ is KLT for any $\unicode[STIX]{x1D6E4}\in L({\mathcal{C}}^{\prime })$.
By [Reference Birkar, Cascini, Hacon and McKernan5, Lemmas 3.6.9 and 3.6.10], any log minimal model of $(Y,L(\unicode[STIX]{x1D6E4}))$ over $U$ is also a log minimal model of $(X,\unicode[STIX]{x1D6E5})$ over $U$ for every $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$. Thus replacing $X$ by $Y$ and ${\mathcal{C}}$ by $L({\mathcal{C}}^{\prime })$ we may assume that $X$ is $\mathbb{Q}$-factorial and $K_{X}+\unicode[STIX]{x1D6E5}_{0}$ is $\unicode[STIX]{x1D70B}$-nef. Since $\unicode[STIX]{x1D6E5}_{0}$ is a big divisor, by the base-point free theorem [Reference Birkar and Waldron6, Theorem 1.2] $K_{X}+\unicode[STIX]{x1D6E5}_{0}$ has an ample model $\unicode[STIX]{x1D713}:X\rightarrow Z$. In particular, $K_{X}+\unicode[STIX]{x1D6E5}_{0}{\sim}_{\mathbb{R},Z}0$. By the case we have already proved, there exist finitely many birational maps $\unicode[STIX]{x1D719}_{i}:X{\dashrightarrow}Y_{i}$ over $Z$, $1\leqslant i\leqslant k$, such that for any $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D713}}(V)$, there is an index $i$ such that $\unicode[STIX]{x1D719}_{i}$ is a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $Z$. Since there are only finitely many indices $1\leqslant i\leqslant k$, by shrinking ${\mathcal{C}}$ (without changing its dimension) if necessary, it follows from Corollary 4.8 that if $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$, then $\unicode[STIX]{x1D719}_{i}$ is a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $Z$ if and only if it is a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$.
Let $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$. Then $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D713}}(V)$, and there exists an index $1\leqslant j\leqslant k$ such that $\unicode[STIX]{x1D719}_{j}$ is a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $Z$. But then $\unicode[STIX]{x1D719}_{j}$ is a log minimal model for $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$.◻
Theorem 4.11. Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Suppose that there is a KLT pair $(X,\unicode[STIX]{x1D6E5}_{0}\geqslant 0)$. Fix $A\geqslant 0$, a general ample$/U$$\mathbb{Q}$-divisor. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ which is defined over the rationals. Let ${\mathcal{C}}\subseteq {\mathcal{L}}_{A}(V)$ be a rational polytope.
Then there are finitely many birational maps $\unicode[STIX]{x1D713}_{j}:X{\dashrightarrow}Z_{j}$ over $U$, $1\leqslant j\leqslant l$ such that if $\unicode[STIX]{x1D713}:X{\dashrightarrow}Z$ is a weak log canonical model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$, for some $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$, then there is an index $1\leqslant j\leqslant l$ and an isomorphism $\unicode[STIX]{x1D709}:Z_{j}\rightarrow Z$ such that $\unicode[STIX]{x1D713}=\unicode[STIX]{x1D709}\circ \unicode[STIX]{x1D713}_{j}$.
Proof. This result corresponds to [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 7.2].
By [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] for every $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$ there exists a $\unicode[STIX]{x1D6E5}^{\prime }\geqslant 0$ such that $K_{X}+\unicode[STIX]{x1D6E5}^{\prime }$ is KLT and $K_{X}+\unicode[STIX]{x1D6E5}^{\prime }{\sim}_{\mathbb{R},U}K_{X}+\unicode[STIX]{x1D6E5}$. Then by [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.6.9] $\unicode[STIX]{x1D713}:X{\dashrightarrow}Z$ is a weak log canonical model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$ if and only if $\unicode[STIX]{x1D713}^{\prime }$ is a weak log canonical model of $K_{X}+\unicode[STIX]{x1D6E5}^{\prime }$ of over $U$. Therefore, by [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] we may assume that $K_{X}+\unicode[STIX]{x1D6E5}$ is KLT for every $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$.
Let $G\geqslant 0$ be a divisor such that it contains the support of every divisor in $V$ and $f:Y\rightarrow X$ a log resolution of $(X,G)$. For a $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{A}(V)$ we can write
where $\unicode[STIX]{x1D6E4}\geqslant 0$ and $E\geqslant 0$ have no common components, $f_{\ast }\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D6E5}$ and $f_{\ast }E=0$.
If $\unicode[STIX]{x1D713}:X{\dashrightarrow}Z$ is a weak log canonical model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$, then $\unicode[STIX]{x1D713}\circ f:Y{\dashrightarrow}Z$ is a weak log canonical model of $K_{Y}+\unicode[STIX]{x1D6E4}$ over $U$. Let ${\mathcal{C}}^{\prime }$ be the image of ${\mathcal{C}}$ under the map $\unicode[STIX]{x1D6E5}\rightarrow \unicode[STIX]{x1D6E4}$. Then ${\mathcal{C}}^{\prime }$ is a rational polytope and $K_{Y}+\unicode[STIX]{x1D6E4}$ is KLT for all $\unicode[STIX]{x1D6E4}\in {\mathcal{C}}^{\prime }$. In particular, $\mathbf{B}_{+}(f^{\ast }A/U)$ does not contain any LC centers of $K_{Y}+\unicode[STIX]{x1D6E4}$ for any $\unicode[STIX]{x1D6E4}\in {\mathcal{C}}^{\prime }$. Let $W$ be the subspace of $\operatorname{WDiv}_{\mathbb{R}}(Y)$ spanned by the strict transforms of the components of $G$ and the exceptional divisors of $f$. Then by [Reference Birkar, Cascini, Hacon and McKernan5, Lemmas 3.7.3 and 3.6.9] we may assume that there exists a general ample$/U$$\mathbb{Q}$-divisor $A^{\prime }$ on $Y$ such that ${\mathcal{C}}^{\prime }\subseteq {\mathcal{L}}_{A^{\prime }}(W)$. Replacing $X$ by $Y$ and ${\mathcal{C}}$ by ${\mathcal{C}}^{\prime }$ we assume that $X$ is smooth.
Let $H_{1}\geqslant 0,H_{2}\geqslant 0,\ldots ,H_{q}\geqslant 0$ be general ample$/U$$\mathbb{Q}$-Cartier divisor on $X$ such that they generate $\operatorname{WDiv}_{\mathbb{R}}(X)$ modulo numerical equivalence over $U$. Let $H=H_{1}+H_{2}+\cdots +H_{q}$. By [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.7.4] we may assume that if $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$, then $\unicode[STIX]{x1D6E5}$ contains the support of $H$. Let $W$ be the affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ spanned by $V$ and the support of $H$. Let ${\mathcal{C}}^{\prime }$ be a rational polytope in ${\mathcal{L}}_{A}(W)$ containing ${\mathcal{C}}$ in its interior such that $K_{X}+\unicode[STIX]{x1D6E5}$ is KLT for all $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}^{\prime }$.
Then by Proposition 4.9 there are finitely many rational maps $\unicode[STIX]{x1D719}_{i}:X{\dashrightarrow}Y_{i},\;1\leqslant i\leqslant k$ over $U$, such that for any $\unicode[STIX]{x1D6E5}^{\prime }\in {\mathcal{C}}^{\prime }\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(W)$ there exists an index $1\leqslant j\leqslant k$ such that $\unicode[STIX]{x1D719}_{j}$ is a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}^{\prime }$ over $U$. By Corollary 4.7 for each index $1\leqslant i\leqslant k$ there are finitely many projective contractions $f_{i,m}:Y_{i}\rightarrow Z_{i,m}$ over $U$ such that if $\unicode[STIX]{x1D6E5}^{\prime }\in {\mathcal{W}}_{\unicode[STIX]{x1D719}_{i},A,\unicode[STIX]{x1D70B}}(W)$ and there is a contraction $f:Y_{i}\rightarrow Z$ over $U$, with
for some ample$/U$$\mathbb{R}$-divisor $D$ on $Z$, then there is an index $(i,m)$ and an isomorphism $\unicode[STIX]{x1D709}:Z_{i,m}\rightarrow Z$ such that $f=\unicode[STIX]{x1D709}\circ f_{i,m}$. Let $\unicode[STIX]{x1D713}_{j}:X{\dashrightarrow}Z_{j}$, $1\leqslant j\leqslant l$ be the finitely many rational maps obtained by composing every $\unicode[STIX]{x1D719}_{i}$ with every $f_{i,j}$. Pick $\unicode[STIX]{x1D6E5}\in {\mathcal{C}}$ and let $\unicode[STIX]{x1D713}:X{\dashrightarrow}Z$ be a weak log canonical model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$. Then $K_{Z}+\unicode[STIX]{x1D6E9}$ is KLT and nef over $U$, where $\unicode[STIX]{x1D6E9}=\unicode[STIX]{x1D713}_{\ast }\unicode[STIX]{x1D6E5}$. Since $K_{Z}+\unicode[STIX]{x1D6E9}$ is KLT, by [Reference Birkar3, Theorem 1.6] $Z$ has a $\mathbb{Q}$-factorization $\unicode[STIX]{x1D702}:Y^{\prime }\rightarrow Z$, where $\unicode[STIX]{x1D702}$ is a small birational morphism and $Y^{\prime }$ is $\mathbb{Q}$-factorial. Then by [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.6.12] we may find $\unicode[STIX]{x1D6E5}^{\prime }\in {\mathcal{C}}^{\prime }\cap {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(W)$ such that $\unicode[STIX]{x1D713}$ is an ample model of $K_{X}+\unicode[STIX]{x1D6E5}^{\prime }$ over $U$. Pick an index $1\leqslant i\leqslant k$ such that $\unicode[STIX]{x1D719}_{i}$ is a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}^{\prime }$ over $U$. By [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.6.6(4)] there exists a contraction $f:Y_{i}\rightarrow Z$ such that
where $\unicode[STIX]{x1D6E4}_{i}=\unicode[STIX]{x1D719}_{i\ast }\unicode[STIX]{x1D6E5}^{\prime }$ and $\unicode[STIX]{x1D6E9}^{\prime }=\unicode[STIX]{x1D713}_{\ast }\unicode[STIX]{x1D6E5}^{\prime }$. As $K_{Z}+\unicode[STIX]{x1D6E9}^{\prime }$ is ample over $U$, it follows that there is an index $m$ and isomorphism $\unicode[STIX]{x1D709}:Z_{i,m}\rightarrow Z$ such that $f=\unicode[STIX]{x1D709}\circ f_{i,m}$. But then
for some index $1\leqslant j\leqslant l$.◻
Corollary 4.12. (Finiteness of weak log conical models)
Let $\unicode[STIX]{x1D70B}:X\rightarrow U$ be a projective contraction between two normal projective varieties with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Fix a general ample$/U$$\mathbb{Q}$-divisor $A\geqslant 0$. Let $V$ be a finite dimensional affine subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$ which is defined over the rationals. Suppose that there is a KLT pair $(X,\unicode[STIX]{x1D6E5}_{0})$.
Then there are finitely many birational maps $\unicode[STIX]{x1D713}_{j}:X{\dashrightarrow}Z_{j}$ over $U$, $1\leqslant j\leqslant l$ such that if $\unicode[STIX]{x1D713}:X{\dashrightarrow}Z$ is a weak log canonical model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$, for some $\unicode[STIX]{x1D6E5}\in {\mathcal{L}}_{A}(V)$, then there is an index $1\leqslant j\leqslant l$ and an isomorphism $\unicode[STIX]{x1D709}:Z_{j}\rightarrow Z$ such that $\unicode[STIX]{x1D713}=\unicode[STIX]{x1D709}\circ \unicode[STIX]{x1D713}_{j}$.
Proof. This result corresponds to [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 7.3].
Since ${\mathcal{L}}_{A}(V)$ is a rational polytope, the statement follows from Theorem 4.11.◻
Proof of Theorem 1.2.
First we prove $(1)$ and $(2)$. Since ample models are unique by [Reference Birkar, Cascini, Hacon and McKernan5, Lemma 3.6.6(1)], by Corollaries 4.12 and 4.7 it suffices to prove that if $\unicode[STIX]{x1D6E5}\in {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$, then $K_{X}+\unicode[STIX]{x1D6E5}$ has both a log minimal model over $U$ and an ample model over $U$.
By [Reference Birkar, Cascini, Hacon and McKernan5, Lemmas 3.7.5 and 3.6.9] we may assume that $K_{X}+\unicode[STIX]{x1D6E5}$ is KLT. Then [Reference Birkar3, Theorem 1.2] gives the existence of a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$, and the existence of the ample model follows from Lemma 4.1.
Part $(3)$ follows as in the proof of Corollary 4.7. Indeed if $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2},\ldots ,\unicode[STIX]{x1D6E5}_{k}$ are the vertices of ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ for a birational contraction $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$, and $\unicode[STIX]{x1D6E5}$ and $\unicode[STIX]{x1D6E5}^{\prime }$ are two divisors lying in the interior of ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$, then for a given (fixed) $0\leqslant l\leqslant k$ we can write $\unicode[STIX]{x1D6E5}=\sum \unicode[STIX]{x1D707}_{j}\unicode[STIX]{x1D6E5}_{j}$ and $\unicode[STIX]{x1D6E5}^{\prime }=\sum \unicode[STIX]{x1D707}_{j}^{\prime }\unicode[STIX]{x1D6E5}_{j}$ for some $\unicode[STIX]{x1D707}_{l}>0$. Therefore, from the base-point free theorem [Reference Birkar and Waldron6, Theorem 1.2] it follows that a curve $C$ is contracted by $K_{Y}+\unicode[STIX]{x1D6E4}=K_{Y}+\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$ if and only if it is contracted by $K_{Y}+\unicode[STIX]{x1D6E4}^{\prime }=K_{Y}+\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}^{\prime }$. In particular, the interior of ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$ is contained in a single ample model ${\mathcal{A}}_{\unicode[STIX]{x1D713},A,\unicode[STIX]{x1D70B}}(V)$ for some projective contraction $\unicode[STIX]{x1D713}:Y\rightarrow Z$. Therefore, ${\mathcal{W}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)\subseteq \bar{{\mathcal{A}}}_{\unicode[STIX]{x1D719},A,\unicode[STIX]{x1D70B}}(V)$.
Part $(4)$ follows combining Part $(1),(2)$ and $(3)$.◻
Proof of Corollary 1.3.
Let $V$ be the finite dimensional affine subspace of $\operatorname{WDiv}(X)_{\mathbb{R}}$ generated by the irreducible components of $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2},\ldots ,\unicode[STIX]{x1D6E5}_{k}$. Then by Theorem 1.2 there exist finitely many rational maps $\unicode[STIX]{x1D719}_{i}:X{\dashrightarrow}Y_{i}$ over $U$, $1\leqslant i\leqslant q$, such that for every $\unicode[STIX]{x1D6E5}\in {\mathcal{E}}_{A,\unicode[STIX]{x1D70B}}(V)$ there is an index $1\leqslant j\leqslant q$ such that $\unicode[STIX]{x1D719}_{j}$ is a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}$ over $U$. Let ${\mathcal{C}}\subseteq {\mathcal{L}}_{A}(V)$ be the (rational) polytope spanned by $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2},\ldots ,\unicode[STIX]{x1D6E5}_{k}$ and let
Then ${\mathcal{C}}_{j}$ is a rational polytope. Note that the ring ${\mathcal{R}}(\unicode[STIX]{x1D70B},D^{\bullet })$ is finitely generated if and only if the rings corresponding to the (rational) polytope ${\mathcal{C}}_{j}$ are finitely generated for all $j=1,2,\ldots ,q$. Therefore, replacing $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2},\ldots ,\unicode[STIX]{x1D6E5}_{k}$ by the vertices of ${\mathcal{C}}_{j}$ we may assume that ${\mathcal{C}}={\mathcal{C}}_{j}$ and $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ is a log minimal model for all $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2},\ldots ,\unicode[STIX]{x1D6E5}_{k}$. Let $\unicode[STIX]{x1D70B}^{\prime }:Y\rightarrow U$ be the induced morphism. Let $\unicode[STIX]{x1D6E4}_{i}=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}_{i}$ for all $1\leqslant i\leqslant k$. Let $g:W\rightarrow X$ and $h:W\rightarrow Y$ be a resolution of the graph of $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$.
Then we have
for $1\leqslant i\leqslant k$.
Note that $F_{i}\geqslant 0$ is an effective $h$-exceptional divisor, since $\unicode[STIX]{x1D719}:X{\dashrightarrow}Y$ is a log minimal model$/U$ for $\unicode[STIX]{x1D6E5}_{i}$, $1\leqslant i\leqslant k$. Let $m>0$ be positive integer such that $G_{i}=m(K_{Y}+\unicode[STIX]{x1D6E4}_{i})$ and $D_{i}=m(K_{X}+\unicode[STIX]{x1D6E5}_{i})$ are both Cartier for all $1\leqslant i\leqslant k$. Then from the projection formula it follows that
Therefore, replacing $X$ by $Y$ we may assume that $X$ is $\mathbb{Q}$-factorial and $K_{X}+\unicode[STIX]{x1D6E5}_{i}$ is KLT and nef over $U$ for all $1\leqslant i\leqslant k$. Since $\unicode[STIX]{x1D6E5}_{i}$ is big for all $1\leqslant i\leqslant k$, by [Reference Birkar and Waldron6, Theorem 1.2] $K_{X}+\unicode[STIX]{x1D6E5}_{i}$ is semi-ample for all $1\leqslant i\leqslant k$. Therefore, it follows that the ring ${\mathcal{R}}(\unicode[STIX]{x1D70B},D^{\bullet })$ is finitely generated.◻
5 The duality of pseudo-effective divisors and movable curves
In this section, we work on projective varieties of arbitrary dimension and over an algebraically closed ground field $k=\overline{k}$ of arbitrary characteristic. We prove Theorems 1.4 and 1.6 here.
Definition 5.1. (Movable curves, strongly movable curves and nef curves)
Let $X$ be a projective variety. An irreducible curve $C$ is called movable if there exists an algebraic family of irreducible curves $\{C_{t}\}\text{}_{t\in T}$ such that $C=C_{t_{0}}$ for some $t_{0}\in T$ and $\bigcup _{t\in T}C_{t}\subseteq X$ is dense in $X$.
A class $\unicode[STIX]{x1D6FE}\in N_{1}(X)_{\mathbb{R}}$ is called movable if there exists a movable curve $C$ such that $\unicode[STIX]{x1D6FE}=[C]$ in $N_{1}(X)_{\mathbb{R}}$.
An irreducible curve $C$ is called strongly movable if there exists a projective birational morphism $f:X^{\prime }\rightarrow X$ and ample divisors $H_{1}^{\prime },H_{2}^{\prime },\ldots ,H_{n-1}^{\prime }$ on $X^{\prime }$ such that $C=f_{\ast }(H_{1}^{\prime }\cap H_{2}^{\prime }\cap \ldots \cap H_{n-1}^{\prime })$, where $n=\operatorname{dim}X=\operatorname{dim}X^{\prime }$.
A class $\unicode[STIX]{x1D6FE}\in N_{1}(X)_{\mathbb{R}}$ is called strongly movable if there exists a strongly movable curve $C$ such that $\unicode[STIX]{x1D6FE}=[C]$ in $N_{1}(X)_{\mathbb{R}}$.
An irreducible curve $C$ is called a nef curve if $D\cdot C\geqslant 0$ for every effective Cartier divisor $D\geqslant 0$. A class $\unicode[STIX]{x1D6FE}\in N_{1}(X)_{\mathbb{R}}$ is called nef is there exists a nef curve $C$ such that $\unicode[STIX]{x1D6FE}=[C]$.
Definition 5.2. (Cone of movable, strongly movable and nef curves)
Let $X$ be a projective variety. The closure in $N_{1}(X)_{\mathbb{R}}$ of the cone of effective classes of movable curves
is called the cone of movable curves.
The closure in $N_{1}(X)_{\mathbb{R}}$ of the cone of effective classes of strongly movable curves
is called the cone of strongly movable curves.
The closure in $N_{1}(X)_{\mathbb{R}}$ of the cone of effective classes of nef curves
is called the cone of nef curves.
The following theorem of Takagi on the existence of Fujita approximation in arbitrary characteristic is one of the main ingredient of our proof.
Theorem 5.3. (Fujita’s approximation theorem [Reference Takagi19, Corollary 2.16])
Let $X$ be a projective variety defined over an algebraically closed field $k$ of arbitrary characteristic. Let $\unicode[STIX]{x1D709}\in N^{1}(X)_{\mathbb{R}}$ be a big divisor class. Then for any real number $\unicode[STIX]{x1D700}>0$ there exists a birational morphism $\unicode[STIX]{x1D707}:X^{\prime }\rightarrow X$ from a projective variety $X^{\prime }$ and a decomposition
in $N^{1}(X^{\prime })_{\mathbb{R}}$ such that:
(1) $a$ is an ample class and $e$ is effective; and
(2) $\operatorname{vol}_{X^{\prime }}(a)>\operatorname{vol}_{X}(\unicode[STIX]{x1D709})-\unicode[STIX]{x1D700}$.
Theorem 5.4. Let $X$ be a projective variety of dimension $n$ over an algebraically closed field $k$ of arbitrary characteristic. Let $\unicode[STIX]{x1D709}\in N^{1}(X)_{\mathbb{R}}$ be a big divisor class. Consider a Fujita approximation of $\unicode[STIX]{x1D709}$:
Let $h\in N^{1}(X)_{\mathbb{R}}$ be an ample class such that $h\pm \unicode[STIX]{x1D709}$ are both ample. Then
Proof. This is [Reference Lazarsfeld15, Theorem 11.4.21]. The main ingredients of the proof of [Reference Lazarsfeld16, Theorem 11.4.21] are the Fujita’s approximation theorem, Hodge type inequalities [Reference Lazarsfeld15, Corollary 1.6.3, Lemma 11.4.22], and the continuity of volume [Reference Lazarsfeld15, Theorem 2.2.44, Example 2.2.47]. The Fujita’s approximation theorem is known in positive characteristic due to [Reference Takagi19] and the other two results are also known to hold in positive characteristic (their proofs in [Reference Lazarsfeld15] work in arbitrary characteristic). As a result, the proof of [Reference Lazarsfeld16, Theorem 11.4.21] holds in arbitrary characteristic. ◻
Proof of the Theorem 1.4.
It is well known that $\overline{\operatorname{Eff}}(X)\subseteq \overline{\operatorname{SNM}}(X)^{\ast }$. By contradiction, assume that the inclusion $\overline{\operatorname{Eff}}(X)\subsetneq \overline{\operatorname{SNM}}(X)^{\ast }$ is strict. Then there exists a class $\unicode[STIX]{x1D709}\in N^{1}(X)_{\mathbb{R}}$ such that
Fix an ample class $h$ such that $h\pm 2\unicode[STIX]{x1D709}$ is ample. Since $\unicode[STIX]{x1D709}$ lies in the interior of $\overline{\operatorname{SNM}}(X)^{\ast }$, there exists $\unicode[STIX]{x1D700}>0$ such that $\unicode[STIX]{x1D709}-\unicode[STIX]{x1D700}h\in \overline{\operatorname{SNM}}(X)^{\ast }$. In particular,
for every strongly movable class $\unicode[STIX]{x1D6FE}$ on $X$. Now consider the class
Since $\unicode[STIX]{x1D709}$ is pseudo-effective, $\unicode[STIX]{x1D709}_{\unicode[STIX]{x1D6FF}}$ is big for all $\unicode[STIX]{x1D6FF}>0$. For small $\unicode[STIX]{x1D6FF}>0$ consider a Fujita approximation (by Theorem 5.3)
such that
Since $\unicode[STIX]{x1D6FF}^{2n}$ is a polynomial of degree $2n$ in $\unicode[STIX]{x1D6FF}$ and $\operatorname{vol}_{X}(\unicode[STIX]{x1D709}_{\unicode[STIX]{x1D6FF}})=(\unicode[STIX]{x1D709}+\unicode[STIX]{x1D6FF}h)^{n}$ is a polynomial of degree $n$ in $\unicode[STIX]{x1D6FF}$ and $(h^{n})>0$, for $\unicode[STIX]{x1D6FF}>0$ sufficiently small we may assume that $0<\unicode[STIX]{x1D6FF}^{2n}<\frac{1}{2}\operatorname{vol}_{X}(\unicode[STIX]{x1D709}_{\unicode[STIX]{x1D6FF}})$. In particular,
Consider the strongly movable class
Then by the projection formula and [Reference Lazarsfeld15, Corollary 1.6.3(ii)], we get
On the other hand,
Now $h\pm \unicode[STIX]{x1D709}_{\unicode[STIX]{x1D6FF}}$ is ample provided that $\unicode[STIX]{x1D6FF}<\frac{1}{2}$. Therefore, by Theorem 5.4 and (5.2) we get,
where $C_{1}=20\cdot (h^{n})_{X}>0$ is independent of $\unicode[STIX]{x1D6FF}$.
Now from (5.3), (5.4), (5.5) and (5.6) we get
where $C_{2}$ and $C_{3}$ are constants independent of $\unicode[STIX]{x1D6FF}$.
Now recall that $\unicode[STIX]{x1D709}$ lies on the boundary of the big cone. Therefore, by the continuity of volume [Reference Lazarsfeld15, Theorem 2.2.44]
and hence also
Thus from (5.7) we see that $(\unicode[STIX]{x1D709}\cdot \unicode[STIX]{x1D6FE}_{\unicode[STIX]{x1D6FF}})/(h\cdot \unicode[STIX]{x1D6FE}_{\unicode[STIX]{x1D6FF}})\rightarrow 0$ as $\unicode[STIX]{x1D6FF}\rightarrow 0^{+}$. But this contradicts (5.1), and completes the proof.◻
Corollary 5.5. Let $X$ be a projective variety defined over an algebraically closed field of arbitrary characteristic. Then the cone of movable curves, the strongly movable curves and the cone of nef curves all coincide, that is, $\overline{\operatorname{NM}}(X)=\overline{\operatorname{SNM}}(X)=\overline{\operatorname{NF}}(X)$.
Proof. From the definition of nef curves it is clear that $\overline{\operatorname{NF}}(X)=\overline{\operatorname{Eff}}(X)^{\ast }$, and $\overline{\operatorname{Eff}}(X)^{\ast }=\overline{\operatorname{SNM}}(X)$ by Theorem 1.4. Thus we only need to prove that $\overline{\operatorname{NM}}(X)=\overline{\operatorname{SNM}}(X)$. The inclusion $\overline{\operatorname{SNM}}(X)\subseteq \overline{\operatorname{NM}}(X)$ is clear. We prove the other inclusion. Let $\unicode[STIX]{x1D6FE}\in \overline{\operatorname{NM}}(X)$. Then there exists a movable curve $C$ such that $\unicode[STIX]{x1D6FE}=[C]$. By Theorem 1.4 it is enough to show that $D\cdot \unicode[STIX]{x1D6FE}\geqslant 0$ for all effective Cartier divisors. Since $C$ belongs to an algebraic family of curves $\{C_{t}\}\text{}_{t\in T}$ such that $\bigcup _{t\in T}C_{t}$ covers a dense subset of $X$, we can find a curve $C_{t_{1}}$ in this family such that $C_{t_{1}}\nsubseteq \operatorname{Supp}(D)$. Thus $D\cdot \unicode[STIX]{x1D6FE}=D\cdot C_{t_{1}}\geqslant 0$, that is $\unicode[STIX]{x1D6FE}\in \overline{\operatorname{Eff}}(X)^{\ast }=\overline{\operatorname{SNM}}(X)$.◻
Proof of Theorem 1.6.
If there exists an algebraic family of $K_{X}$-negative rational curves covering a dense subset of $X$, then from Theorem 1.4 and Corollary 5.5 it follows that $K_{X}$ it not pseudo-effective.
Now assume that $K_{X}$ is not pseudo-effective. Then by Theorem 1.4 and Corollary 5.5, there exist a movable class $\unicode[STIX]{x1D6FE}\in \overline{\operatorname{NM}}(X)$ and an algebraic family of irreducible curves $\{C_{t}\}\text{}_{t\in T}$ representing $\unicode[STIX]{x1D6FE}$ such that $K_{X}\cdot C_{t}<0$ for all $t\in T$ and $\bigcup _{t\in T}C_{t}\subseteq X$ is dense in $X$. We fix a very ample divisor $H$ in $X$. Then by [Reference Miyaoka18, Theorem 1.1] there exist rational curves $\{C_{s}^{\prime }\}\text{}_{s\in S}$ of bounded degree through every point of $\bigcup _{t\in T}C_{t}\subseteq X$ such that
By [Reference Kollár and Mori14, Corollary 1.19(3)] there are finitely many subclasses of these rational curves, say $\{C_{s}^{\prime }\}\text{}_{s\in S_{i}}$, $1\leqslant i\leqslant n,S_{i}\subseteq S\text{ and }\coprod _{i=1}^{n}S_{i}=S$, such that for each fixed $i$, any two curves in $\{C_{s}^{\prime }\}\text{}_{s\in S_{i}}$ are numerically equivalent. Now since $\bigcup _{s\in S}C_{s}^{\prime }\subseteq X$ is dense in $X$, it follows that one of these subclasses, say $\{C_{\unicode[STIX]{x1D706}}^{\prime }\}\text{}_{\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}}$, $\unicode[STIX]{x1D6EC}=S_{i_{k}}$ for some $i_{k}\in \{1,2,\ldots ,n\}$ has the property that $\bigcup _{\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}}C_{\unicode[STIX]{x1D706}}^{\prime }\subseteq X$ is dense in $X$. Let $d:=H\cdot C_{\unicode[STIX]{x1D706}}^{\prime }$. Then the curves $\{C_{\unicode[STIX]{x1D706}}^{\prime }\}\text{}_{\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}}$ belong to the family $\operatorname{Univ}_{d}(\mathbb{P}^{1},X)\rightarrow \operatorname{Hom}_{d}(\mathbb{P}^{1},X)$, where $\operatorname{Hom}_{d}(\mathbb{P}^{1},X)$ is the scheme of degree $d$ morphisms $\mathbb{P}^{1}\rightarrow X$. Let $V^{\prime }\subseteq \operatorname{Hom}_{d}(\mathbb{P}^{1},X)$ be the connected component of $\operatorname{Hom}_{d}(\mathbb{P}^{1},X)$ which contains all the points corresponding to the curves $\{C_{\unicode[STIX]{x1D706}}^{\prime }\}\text{}_{\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}}$ (since all $C_{\unicode[STIX]{x1D706}}^{\prime }$’s are numerically equivalent, they are contained in a connected component). Let ${\mathcal{U}}^{\prime }=V^{\prime }\times _{\operatorname{Hom}_{d}(\mathbb{P}^{1},X)}\operatorname{Univ}_{d}(\mathbb{P}^{1},X)$. Then ${\mathcal{U}}^{\prime }\rightarrow V^{\prime }$ is a (flat) family of rational curves $\unicode[STIX]{x1D6E4}_{t}$ such that $K_{X}\cdot \unicode[STIX]{x1D6E4}_{t}<0$ and $\bigcup _{t\in V^{\prime }}\unicode[STIX]{x1D6E4}_{t}\subseteq X$ is dense in $X$. Finally, let $V$ be an irreducible component of $V^{\prime }$ such that $\bigcup _{t\in V}\unicode[STIX]{x1D6E4}_{t}\subseteq X$ is dense in $X$. Set ${\mathcal{U}}=V\times _{V^{\prime }}{\mathcal{U}}^{\prime }=V\times _{\operatorname{Hom}_{d}(\mathbb{P}^{1},X)}\operatorname{Univ}_{d}(\mathbb{P}^{1},X)$. Then ${\mathcal{U}}\rightarrow V$ is a (flat) algebraic family of rational curves satisfying the required conditions.◻
Proof of Corollary 1.7.
Following the notations as in the proof of Theorem 1.6 we see that the evaluation map $\operatorname{ev}:\mathbb{P}^{1}\times _{k}V\rightarrow X$ is a dominant morphism, where $V$ is an irreducible variety. Thus by [Reference Debarre9, Remark 4.2(2)] $X$ is uniruled.◻
6 The structure of the nef cone of curves
In this section, we prove the structure theorem for nef cone of curves. It gives a partial answer to Batyrev’s Conjecture 1.1 in positive characteristic.
We define coextremal rays and bounding divisors as in [Reference Lehmann17].
Definition 6.1. Let $\unicode[STIX]{x1D6FC}$ be a class in $\overline{\operatorname{NM}}(X)$. A coextremal ray $\mathbb{R}_{{\geqslant}0}\unicode[STIX]{x1D6FC}\subseteq N_{1}(X)$ is a $(K_{X}+\unicode[STIX]{x1D6E5})$-negative ray of $\overline{\operatorname{NM}}(X)$ which is extremal for $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+\overline{\operatorname{NM}}(X)$; equivalently it satisfies the following properties:
(1) $(K_{X}+\unicode[STIX]{x1D6E5})\cdot \unicode[STIX]{x1D6FC}<0$.
(2) If $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}\in \overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+\overline{\operatorname{NM}}(X)$ and $\unicode[STIX]{x1D6FD}_{1}+\unicode[STIX]{x1D6FD}_{2}\in \mathbb{R}_{{\geqslant}0}\unicode[STIX]{x1D6FC}$, then $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}\in \mathbb{R}_{{\geqslant}0}\unicode[STIX]{x1D6FC}$.
Definition 6.2. A nonzero $\mathbb{R}$-Cartier divisor $D$ is called a bounding divisor if it satisfies the following properties:
(1) $D\cdot \unicode[STIX]{x1D6FC}\geqslant 0$ for every class $\unicode[STIX]{x1D6FC}$ in $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+\overline{\operatorname{NM}}(X)$.
(2) $D^{\bot }$ contains some coextremal ray.
For a subset $V\subseteq N_{1}(X)$, a bounding divisor $D$ is called a $V$-bounding divisor if $D\cdot \unicode[STIX]{x1D6FC}\geqslant 0$ for all $\unicode[STIX]{x1D6FC}\in V$.
We need the following results first.
Lemma 6.3. Let $(X,\unicode[STIX]{x1D6E5}\geqslant 0)$ be a $\mathbb{Q}$-factorial projective KLT pair of dimension $3$ and $\operatorname{char}p>5$. Suppose that $\unicode[STIX]{x1D6E5}$ is a big $\mathbb{R}$-divisor. If $K_{X}+\unicode[STIX]{x1D6E5}$ lies on the boundary of $\overline{\operatorname{Eff}}(X)$, then there exists a birational contraction $\unicode[STIX]{x1D719}:X{\dashrightarrow}X^{\prime }$, a projective morphism $f:X^{\prime }\rightarrow Y$ and an ample $\mathbb{R}$-divisor $L$ on $Y$ such that $K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime }{\sim}_{\mathbb{R}}f^{\ast }L$ and $-(K_{X^{\prime }}+G^{\prime })$ is $f$-ample for some KLT pair $(X^{\prime },G^{\prime })$, where $K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime }=\unicode[STIX]{x1D719}_{\ast }(K_{X}+\unicode[STIX]{x1D6E5})$.
Proof. Let $H\geqslant 0$ be an ample $\mathbb{R}$-divisor on $X$ such that $K_{X}+\unicode[STIX]{x1D6E5}+H$ is KLT and nef (using Theorem 3.1). Since $K_{X}+\unicode[STIX]{x1D6E5}$ is pseudo-effective, by [Reference Birkar and Waldron6, Theorem 1.6] $(K_{X}+\unicode[STIX]{x1D6E5})$-MMP with the scaling of $H$ terminates with a log minimal model $\unicode[STIX]{x1D719}^{\prime }:X{\dashrightarrow}X^{\prime }$ such that $K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime }=\unicode[STIX]{x1D719}_{\ast }^{\prime }(K_{X}+\unicode[STIX]{x1D6E5})$ is nef. Since $\unicode[STIX]{x1D6E5}^{\prime }$ is a big divisor, by perturbing $\unicode[STIX]{x1D6E5}^{\prime }$, from the base-point free theorem [Reference Birkar and Waldron6, Theorem 1.2] it follows that $K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime }$ is semi-ample. Therefore, there exists a projective morphism $f:X^{\prime }\rightarrow Y$ and an ample $\mathbb{R}$-divisor $L$ on $Y$ such that $K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime }{\sim}_{\mathbb{R}}f^{\ast }L$ (see [Reference Fujino10, Lemma 4.13]). Write $\unicode[STIX]{x1D6E5}^{\prime }=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}\equiv A^{\prime }+B^{\prime }$, where $A^{\prime }$ is an ample $\mathbb{R}$-divisor. Then $(X^{\prime },\unicode[STIX]{x1D6E5}^{\prime }+\unicode[STIX]{x1D700}B^{\prime })$ is KLT for $0<\unicode[STIX]{x1D700}\ll 1$. In particular, $(X^{\prime },(1-\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}^{\prime }+\unicode[STIX]{x1D700}B^{\prime })$ is KLT. Let $G^{\prime }=(1-\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}^{\prime }+\unicode[STIX]{x1D700}B^{\prime }\geqslant 0$. Then $(X^{\prime },G^{\prime })$ is KLT and $K_{X^{\prime }}+G^{\prime }\equiv _{f}-\unicode[STIX]{x1D700}A^{\prime }$.◻
Remark 6.4. Note that the variety $Y$ in the lemma above is uniquely determined by $K_{X}+\unicode[STIX]{x1D6E5}$, since it is the ample model of $(X,\unicode[STIX]{x1D6E5})$.
Proposition 6.5. Let $(X,\unicode[STIX]{x1D6E5}\geqslant 0)$ be a $\mathbb{Q}$-factorial projective KLT pair with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Suppose that $A\geqslant 0$ is a general ample $\mathbb{Q}$-divisor on $X$. Let $V$ be a finite dimensional subspace of $\operatorname{WDiv}_{\mathbb{R}}(X)$. Define
Then there are finitely many birational contractions $\unicode[STIX]{x1D719}_{i}:X{\dashrightarrow}X_{i}$ for $1\leqslant i\leqslant k$ such that for every $\unicode[STIX]{x1D6E4}\in {\mathcal{E}}_{A}$ satisfying the property that $K_{X}+\unicode[STIX]{x1D6E5}+A+\unicode[STIX]{x1D6E4}$ lies on the boundary of $\overline{\operatorname{Eff}}(X)$, there exists an index $1\leqslant j\leqslant k$ such that $\unicode[STIX]{x1D719}_{j}$ is a log minimal model of $K_{X}+\unicode[STIX]{x1D6E5}+A+\unicode[STIX]{x1D6E4}$. Furthermore, corresponding to each $\unicode[STIX]{x1D719}_{i}$, there exists a unique log Fano fibration $g_{i}:X_{i}\rightarrow Y_{i}$ such that $K_{X_{i}}+{\unicode[STIX]{x1D719}_{i}}_{\ast }(\unicode[STIX]{x1D6E5}+A+\unicode[STIX]{x1D6E4}){\sim}_{\mathbb{R}}g_{i}^{\ast }L_{i}$, where $L_{i}$ is an ample $\mathbb{R}$-divisor on $Y_{i}$.
Proof. This result corresponds to [Reference Lehmann17, Theorem 3.2].
For a given $\unicode[STIX]{x1D6E4}\in {\mathcal{E}}_{A}$ the existence of $\unicode[STIX]{x1D719}_{i}$ and $g_{i}$ is clear from Lemma 6.3. Then from Theorem 1.2 and Remark 6.4 it follows that there are only finitely many such $\unicode[STIX]{x1D719}_{i}$ and $g_{i}$ for all $\unicode[STIX]{x1D6E4}\in {\mathcal{E}}_{A}$.◻
Proposition 6.6. Let $(X,\unicode[STIX]{x1D6E5})$ be a $\mathbb{Q}$-factorial projective KLT pair with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Suppose that $B\geqslant 0$ is a big $\mathbb{R}$-divisor such that $(X,\unicode[STIX]{x1D6E5}+B)$ is KLT. Then there exist an open neighborhood $U\subseteq N^{1}(X)$ of $[K_{X}+\unicode[STIX]{x1D6E5}+B]\in N^{1}(X)$ and a finite set of movable curves $\{C_{i}\}\text{}_{i=1}^{N}$ on $X$ such that for every class $\unicode[STIX]{x1D6FC}\in U$ which lies on the boundary of $\overline{\operatorname{Eff}}(X)$ we have $\unicode[STIX]{x1D6FC}\cdot C_{i}=0$ for some $i\in \{1,2,\ldots ,N\}$.
Proof. This result corresponds to [Reference Lehmann17, Proposition 3.3].
Since $B$ is a big $\mathbb{R}$-divisor, $B\equiv H+E$ for some ample $\mathbb{R}$-divisor $H\geqslant 0$ and an effective $\mathbb{R}$-divisor $E$. Then $K_{X}+\unicode[STIX]{x1D6E5}+B+\unicode[STIX]{x1D700}E$ is KLT for $0<\unicode[STIX]{x1D700}\ll 1$. In particular, $K_{X}+\unicode[STIX]{x1D6E5}+(1-\unicode[STIX]{x1D700})B+\unicode[STIX]{x1D700}E$ is KLT. Let $A\geqslant 0$ be an ample $\mathbb{Q}$-divisor such that $\unicode[STIX]{x1D700}H-A$ is ample and $K_{X}+\unicode[STIX]{x1D6E5}+A+(1-\unicode[STIX]{x1D700})B+\unicode[STIX]{x1D700}E$ is KLT, by Theorem 3.1. Let $\{H_{j}\geqslant 0\}\text{}_{j=1}^{m}$ be a finite set of ample $\mathbb{Q}$-divisors such that the convex hull of the classes $[H_{j}]$’s contains an open set around $[\unicode[STIX]{x1D700}H-A]$ in $N^{1}(X)$. Let $U^{\prime }$ be an open neighborhood of $[B-A]$ contained in the convex hull of $[B-\unicode[STIX]{x1D700}H+H_{j}]$’s. We apply [Reference Lehmann17, Lemma 3.1] to $K_{X}+\unicode[STIX]{x1D6E5}+A+(1-\unicode[STIX]{x1D700})B+\unicode[STIX]{x1D700}E$ and $H_{j}$’s to obtain finitely many ample $\mathbb{Q}$-divisors $0\leqslant W_{j}{\sim}_{\mathbb{Q}}H_{j}$. Let $V$ be the vector space of $\mathbb{R}$-divisors spanned by the irreducible components of $(1-\unicode[STIX]{x1D700})B+\unicode[STIX]{x1D700}E$ and of the $W_{j}$’s. Therefore, $V$ is a finite dimensional subspace of $\operatorname{WDiv}(X)_{\mathbb{R}}$ such that every class in $U^{\prime }$ has an effective representative $\unicode[STIX]{x1D6E4}\in V$ with $(X,\unicode[STIX]{x1D6E5}+A+\unicode[STIX]{x1D6E4})$ KLT.
Let $\unicode[STIX]{x1D6E4}\in V$ be a representative of a class in $U^{\prime }$ such that $D=K_{X}+\unicode[STIX]{x1D6E5}+A+\unicode[STIX]{x1D6E4}$ is KLT. We can run the $D$-MMP with the scaling of an ample divisor. If $D$ lies on the boundary of $\overline{\operatorname{Eff}}(X)$, then by Proposition 6.5 there exists a birational contraction $\unicode[STIX]{x1D719}_{i}:X{\dashrightarrow}X_{i}$ and a log Fano fibration $g_{i}:X_{i}\rightarrow Z_{i}$ such that $K_{X_{i}}+{\unicode[STIX]{x1D719}_{i}}_{\ast }(\unicode[STIX]{x1D6E5}+A+\unicode[STIX]{x1D6E4}){\sim}_{\mathbb{R}}f^{\ast }L_{i}$ for some ample $\mathbb{R}$-divisor $L_{i}$ on $Z_{i}$. Let $C_{i}^{\prime }$ be a curve on a general fiber of $g_{i}$. Note that the exceptional locus $\operatorname{Ex}(\unicode[STIX]{x1D719}_{i}^{-1})$ where $\unicode[STIX]{x1D719}_{i}^{-1}:X_{i}{\dashrightarrow}X$ is not an isomorphism intersects the general fiber of $g_{i}$ along at least codimension $2$ subsets (see [Reference Birkar and Waldron6, Lemma 2.4]). Therefore, by choosing $C_{i}^{\prime }$ sufficiently general we see that $\unicode[STIX]{x1D719}_{i}:X_{i}{\dashrightarrow}X$ is an isomorphism in a neighborhood of $C_{i}^{\prime }$ and $C_{i}^{\prime }$ belongs to a family of curves dominating $X_{i}$. Let $C_{i}$ be the image of $C_{i}^{\prime }$ under $\unicode[STIX]{x1D719}_{i}^{-1}$. Then $C_{i}$ is a movable curve on $X$ and $D\cdot C_{i}=(K_{X_{i}}+{\unicode[STIX]{x1D719}_{i}}_{\ast }(\unicode[STIX]{x1D6E5}+A+\unicode[STIX]{x1D6E4}))\cdot C_{i}^{\prime }=f^{\ast }L_{i}\cdot C_{i}^{\prime }=0$.
Now by Proposition 6.5 there are finitely many log Fano fibrations $g_{i}:X_{i}\rightarrow Z_{i}$ for all $\unicode[STIX]{x1D6E4}\in V$. Therefore, there are finitely many movable curves $\{C_{i}\}$ on $X$ satisfying the properties as in the previous paragraph. Set $U=U^{\prime }+[K_{X}+\unicode[STIX]{x1D6E5}+A]$. Then $U$ is an open neighborhood of $[K_{X}+\unicode[STIX]{x1D6E5}+A]$ and the curves $C_{i}$’s have the required properties.◻
Corollary 6.7. Let $(X,\unicode[STIX]{x1D6E5})$ be a $\mathbb{Q}$-factorial projective KLT pair with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Suppose that ${\mathcal{S}}\subseteq \overline{\operatorname{Eff}}(X)$ is a set of divisor classes satisfying the following properties:
(1) ${\mathcal{S}}$ is closed.
(2) For each element $\unicode[STIX]{x1D6FD}\in {\mathcal{S}}$, there is some big effective divisor $B$ such that $(X,\unicode[STIX]{x1D6E5}+B)$ is KLT and $[K_{X}+\unicode[STIX]{x1D6E5}+B]=c\unicode[STIX]{x1D6FD}$ for some $c>0$.
Then there are finitely many movable curves $\{C_{i}\}$ such that every class $\unicode[STIX]{x1D6FC}$ which lies on the boundary of $\overline{\operatorname{Eff}}(X)$ satisfies $\unicode[STIX]{x1D6FC}\cdot C_{i}=0$ for some $i$.
Proof. With the help of Proposition 6.6, the same proof as in [Reference Lehmann17, Corollary 3.5] works. ◻
Proposition 6.8. Let $(X,\unicode[STIX]{x1D6E5})$ be a $\mathbb{Q}$-factorial projective KLT pair with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a closed convex cone containing $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}=0}-\{0\}$ in its interior. Then there is a finite set of movable curves $\{C_{i}\}$ such that for any $V$-bounding divisor $D$ there is some $C_{i}$ for which $D\cdot C_{i}=0$.
Proof. This result corresponds to [Reference Lehmann17, Proposition 4.4].
Let ${\mathcal{S}}$ be the set of all $V$-bounding divisors. We may assume that ${\mathcal{S}}$ is nonempty, otherwise there is nothing to prove. Note that a nonzero $\mathbb{R}$-Cartier divisor $D$ is $V$-bounding if and only if $D$ lies on the boundary of $\overline{\operatorname{Eff}}(X)$ and satisfies the closed condition
Now by [Reference Lehmann17, Lemma 4.3] there exists an ample $\mathbb{R}$-Cartier divisor $A_{D}\geqslant 0$ and a positive real number $\unicode[STIX]{x1D6FF}_{D}>0$ such that
Let $A^{\prime }\geqslant 0$ be an ample $\mathbb{R}$-divisor such that $A^{\prime }{\sim}_{\mathbb{R}}(1/\unicode[STIX]{x1D6FF}_{D})A_{D}$ and $(X,\unicode[STIX]{x1D6E5}+A^{\prime })$ is KLT (see Theorem 3.1). Then we have
Therefore, by Corollary 6.7 there exists finitely many movable curves $\{C_{i}\}$ satisfying the required conditions.◻
Theorem 6.9. Let $(X,\unicode[STIX]{x1D6E5})$ be a $\mathbb{Q}$-factorial projective DLT pair with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a closed convex cone containing $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}=0}-\{0\}$ in its interior. Then there exist finitely many movable curves $C_{i}$ such that
Proof. This result is a variant of [Reference Lehmann17, Corollary 4.5].
Without loss of generality we may assume by shrinking $V$ if necessary that $\overline{\operatorname{NE}}(X)+V$ does not contain any $1$-dimensional subspace of $N_{1}(X)$. Then there exists an ample divisor $A$ which is positive on $V-\{0\}$.
First we reduce the problem to the KLT case. Let $H\geqslant 0$ be an ample $\mathbb{Q}$-divisor on $X$. Since $X$ is $\mathbb{Q}$-factorial, $H+\unicode[STIX]{x1D700}\unicode[STIX]{x1D6E5}$ is ample for $0<\unicode[STIX]{x1D700}\ll 1$. Let $0\leqslant A{\sim}_{\mathbb{R}}H+\unicode[STIX]{x1D700}\unicode[STIX]{x1D6E5}$ be an ample divisor which avoids all DLT centers of $(X,\unicode[STIX]{x1D6E5})$ as well as all irreducible components of $\unicode[STIX]{x1D6E5}$. Then $(X,\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A)$ is DLT for $1<\unicode[STIX]{x1D6FF}\ll 1$. In particular, $(X,(1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A)$ is KLT and $K_{X}+(1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A{\sim}_{\mathbb{R}}K_{X}+\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}H$. Choose $\unicode[STIX]{x1D6FF}>0$ sufficiently small such that $\overline{\operatorname{NE}}(X)_{K_{X}+(1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A=0}$ is contained in the interior of the cone $V$. We show that if we assume the statement for $((1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A,V)$, then it holds for $(\unicode[STIX]{x1D6E5},V)$.
Let $\unicode[STIX]{x1D6FC}\in \overline{\operatorname{NM}}(X)$. If $\unicode[STIX]{x1D6FC}\in \overline{\operatorname{NE}}(X)_{K_{X}+(1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A\geqslant 0}+V+\sum \mathbb{R}_{{\geqslant}0}[C_{i}]$, then $\unicode[STIX]{x1D6FC}=\unicode[STIX]{x1D6FD}+\unicode[STIX]{x1D6FE}+\sum a_{i}[C_{i}]$, where $\unicode[STIX]{x1D6FD}\in \overline{\operatorname{NE}}(X)_{K_{X}+(1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A\geqslant 0},\unicode[STIX]{x1D6FE}\in V$ and $a_{i}\geqslant 0$ for all $i$. Note that $(K_{X}+(1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A)\cdot \unicode[STIX]{x1D6FD}\geqslant 0$ implies that $(K_{X}+\unicode[STIX]{x1D6E5})\cdot \unicode[STIX]{x1D6FD}\geqslant 0$ by letting $\unicode[STIX]{x1D6FF}\rightarrow 0^{+}$. Therefore, by replacing $(X,\unicode[STIX]{x1D6E5})$ by $(X,(1-\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D700})\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D6FF}A)$ we may assume that $(X,\unicode[STIX]{x1D6E5}\geqslant 0)$ is KLT.
Let $\{C_{i}\}\text{}_{i=1}^{N}$ be the finite set of curves obtained in Proposition 6.8. It is obvious that the right hand side of (6.1) is contained in the left hand side. We show the other inclusion. Let $\unicode[STIX]{x1D6FC}\in \overline{\operatorname{NM}}(X)$ such that it is not contained in $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+V+\sum \mathbb{R}_{{\geqslant}0}[C_{i}]$. Then there exists a $\mathbb{R}$-divisor $B$ such that $B\cdot \unicode[STIX]{x1D6FE}\geqslant 0$ for all $\unicode[STIX]{x1D6FE}\in \overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+V+\sum \mathbb{R}_{{\geqslant}0}[C_{i}]$ but $B\cdot \unicode[STIX]{x1D6FC}<0$.
Let $A$ be an ample divisor which is positive on $V-\{0\}$. Set $\unicode[STIX]{x1D700}=\operatorname{max}\{t>0:A+tB\text{ is pseudo-effective }\}$. Then $\unicode[STIX]{x1D700}>0$. Furthermore, from the discussion in the proof of the Proposition 6.8 it follows that $A+\unicode[STIX]{x1D700}B$ is a $V$-bounding divisor. However, $(A+\unicode[STIX]{x1D700}B)\cdot C_{i}>0$ for all $i\in \{1,2,\ldots ,N\}$, a contradiction to the Proposition 6.8.◻
Theorem 6.10. Let $(X,\unicode[STIX]{x1D6E5})$ be a projective DLT pair with $\operatorname{dim}X=3$ and $\operatorname{char}p>5$. Let $V$ be a closed convex cone containing $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}=0}-\{0\}$ in its interior. Then there are finitely many movable curves $C_{i}$ such that
Proof. This result corresponds to [Reference Lehmann17, Theorem 4.7].
The statement is vacuously true if $K_{X}+\unicode[STIX]{x1D6E5}$ is pseudo-effective. So we may assume that $K_{X}+\unicode[STIX]{x1D6E5}$ is not pseudo-effective. We complete the proof in two steps.
First we reduce the problem to a $\mathbb{Q}$-factorial DLT pair. By Lemma 4.2 there exists a small birational morphism $\unicode[STIX]{x1D70B}:Y\rightarrow X$ and a $\mathbb{Q}$-factorial DLT pair $(Y,\unicode[STIX]{x1D6E4}\geqslant 0)$ such that
Since the map $\unicode[STIX]{x1D70B}_{\ast }:N_{1}(Y)\rightarrow N_{1}(X)$ is linear, $\unicode[STIX]{x1D70B}_{\ast }^{-1}V$ is closed and convex. Furthermore, $\overline{\operatorname{NE}}(Y)_{K_{Y}+\unicode[STIX]{x1D6E4}=0}$ is contained in the interior of $\unicode[STIX]{x1D70B}_{\ast }^{-1}V$, since $\unicode[STIX]{x1D70B}_{\ast }$ on curves is dual to $\unicode[STIX]{x1D70B}^{\ast }$ on divisors. Then by Theorem 6.9 we have
where $\{C_{i}^{\prime }\}$ are movable curves on $Y$.
By [Reference Lehmann17, Lemma 2.1] pushing forward the above relation by $\unicode[STIX]{x1D70B}_{\ast }$ we get
where $C_{i}=\unicode[STIX]{x1D70B}_{\ast }C_{i}^{\prime }$.
Since birational push-forward of a movable curve is again movable, this completes the proof. ◻
Proof of Theorem 1.8.
Let $\{V_{j}\}$ be a countable collection of nested closed convex cones containing $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}=0}-\{0\}$ in their interiors such that
Let ${\mathcal{C}}_{j}$ be the finite set of movable curves corresponding to $V_{j}$ obtained in Theorem 6.10. Note that all the curves in ${\mathcal{C}}_{j}^{\prime }$ lie on the boundary of $\overline{\operatorname{NM}}(X)$, but not all of them generate extremal rays of $\overline{\operatorname{NM}}(X)$. By removing those redundant curves we may assume that each curve in ${\mathcal{C}}_{j}$ generates a coextremal ray. Define ${\mathcal{C}}=\bigcup _{j}{\mathcal{C}}_{j}$. Then ${\mathcal{C}}$ is at most countable.
By contradiction assume that $\unicode[STIX]{x1D6FC}\in \overline{\operatorname{NM}}(X)$ but
Since this cone is closed and convex, there is a convex open neighborhood $U$ of the cone which does not contain $\unicode[STIX]{x1D6FC}$. Then from our construction it follows that $V_{j}\subseteq U$ for $j$ sufficiently large. In particular,
But this is a contradiction to Theorem 6.10. This completes the proof of the first part of the theorem.
Let $\unicode[STIX]{x1D6FC}$ be a curve class which lies on the $(K_{X}+\unicode[STIX]{x1D6E5})$-negative portion of the boundary of $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+\overline{\operatorname{NM}}(X)$ and that $\unicode[STIX]{x1D6FC}$ does not lie on a hyperplane supporting both $\overline{\operatorname{NM}}(X)$ and $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}$. For a sufficiently small open neighborhood $U$ of $\unicode[STIX]{x1D6FC}$ the points of $\overline{U}$ still do not lie on such a hyperplane. We may also assume that $\overline{U}$ is disjoint from $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}$. We define
Fix a compact slice ${\mathcal{S}}$ of $\overline{\operatorname{Eff}}(X)$ and let ${\mathcal{D}}$ denote the bounding divisors contained in ${\mathcal{S}}$ which have vanishing intersection with some elements of ${\mathcal{P}}$. By construction ${\mathcal{D}}$ is positive on $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}-\{0\}$. By passing to a compact slice, say ${\mathcal{T}}$, it is easy to see that ${\mathcal{D}}$ is also positive on $V_{j}-\{0\}$ for $j\gg 0$. In other words, every element of ${\mathcal{P}}$ is on the boundary of $\overline{\operatorname{NE}}(X)_{K_{X}+\unicode[STIX]{x1D6E5}\geqslant 0}+V_{j}+\overline{\operatorname{NM}}(X)$. By Theorem 6.10 there are only finitely many coextremal rays that lie on this cone, and thus there are only finitely many coextremal rays contained in $U$. Therefore, $\unicode[STIX]{x1D6FC}$ cannot be an accumulation point.◻
7 Finiteness of coextremal rays in characteristic $0$
In this section, we prove the Batyrev’ Conjecture 1.1 over the filed of complex numbers $\mathbb{C}$. We follow the same strategy as in the proof of [Reference Araujo1, Theorem 1.3]. For a given $\unicode[STIX]{x1D700}>0$, a pair $(X,\unicode[STIX]{x1D6E5})$ is called a $\unicode[STIX]{x1D700}$-log canonical pair if for every divisor $E$ over $X$ the discrepancies $a(E;X,\unicode[STIX]{x1D6E5})\geqslant -1+\unicode[STIX]{x1D700}$.
Proposition 7.1. Fix a real number $\unicode[STIX]{x1D700}>0$ and an integer $n>0$. Then there exists a constant $G=G(n,\unicode[STIX]{x1D700})>0$ depending only on $n$ and $\unicode[STIX]{x1D700}$ and satisfying the following properties:
If $(X,\unicode[STIX]{x1D6E5})$ is a $\mathbb{Q}$-factorial projective $\unicode[STIX]{x1D700}$-log canonical pair of dimension $n$ and $K_{X}+\unicode[STIX]{x1D6E5}$ is not pseudo-effective, then for every Mori fiber space $\unicode[STIX]{x1D719}:X{\dashrightarrow}X^{\prime }$, $f^{\prime }:X^{\prime }\rightarrow Y^{\prime }$, obtained via a $(K_{X}+\unicode[STIX]{x1D6E5})$-MMP, there exists a projective movable curve $C\subseteq X$ isomorphic (under $\unicode[STIX]{x1D719}$) to a movable curve $C^{\prime }$ lying on the general fiber of $f^{\prime }$ such that $-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant G$.
Proof. Since $K_{X}+\unicode[STIX]{x1D6E5}$ is not pseudo-effective, by running a $(K_{X}+\unicode[STIX]{x1D6E5})$-MMP as in [Reference Birkar, Cascini, Hacon and McKernan5, Corollary 1.3.3] we end up with a Mori fiber space $f^{\prime }:X^{\prime }\rightarrow Y^{\prime }$ such that $-(K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime })$ is $f^{\prime }$-ample, where $\unicode[STIX]{x1D719}:X{\dashrightarrow}X^{\prime }$ is a birational contraction and $\unicode[STIX]{x1D6E5}^{\prime }=\unicode[STIX]{x1D719}_{\ast }\unicode[STIX]{x1D6E5}$. Note that $(X^{\prime },\unicode[STIX]{x1D6E5}^{\prime })$ is a $\mathbb{Q}$-factorial projective $\unicode[STIX]{x1D700}$-log canonical pair and $\unicode[STIX]{x1D70C}(X^{\prime }/Y^{\prime })=1$.
Let $F$ be a general fiber of $f^{\prime }$. Then $(F,\unicode[STIX]{x1D6E5}_{F})$ is $\unicode[STIX]{x1D700}$-log canonical and $-(K_{F}+\unicode[STIX]{x1D6E5}_{F})$ is ample, where $K_{F}+\unicode[STIX]{x1D6E5}_{F}=(K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime })|_{F}$. Note that $-K_{X}=-(K_{X}+\unicode[STIX]{x1D6E5})+\unicode[STIX]{x1D6E5}$ is $f^{\prime }$-ample, since $\unicode[STIX]{x1D70C}(X^{\prime }/Y^{\prime })=1$. In particular, $-K_{F}{\sim}_{\mathbb{Q}}-K_{X}|_{F}$ is ample. By the boundedness of $\unicode[STIX]{x1D700}$-log canonical log Fano varieties [Reference Birkar4, Theorem 1.1], there exist an integer $M=M(d,\unicode[STIX]{x1D700})>0$ and a real number $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D706}(d,\unicode[STIX]{x1D700})>0$ depending only on $\operatorname{dim}F=d$ and $\unicode[STIX]{x1D700}$ such that $-MK_{F}$ is an ample Cartier divisor and $(-K_{F})^{d}\leqslant \unicode[STIX]{x1D706}$. Then $-MK_{F}-(K_{F}+\unicode[STIX]{x1D6E5}_{F})$ is ample. Thus by Kollár’s effective base-point free theorem [Reference Kollár13, Theorem 1.1], there exists an integer $N=N(M,d)>0$ such that $-NK_{F}$ is base-point free.
Now let $Z^{\prime }\subseteq X^{\prime }$ be the exceptional locus of $\unicode[STIX]{x1D719}^{-1}:X^{\prime }{\dashrightarrow}X$. Then $\operatorname{codim}_{X^{\prime }}Z^{\prime }\geqslant 2$. Let $C^{\prime }$ be a general curve contained in $F$ obtained by intersecting $(d-1)$ general members of the linear system $|-NK_{F}|$. Then $C^{\prime }$ belongs to a moving family of curves dominating $X$, that is, $C^{\prime }$ is a movable curve, and $C^{\prime }$ does not intersect $F\cap Z$, since $\operatorname{codim}_{F}(F\cap Z)\geqslant 2$. In particular, $C^{\prime }$ can be lifted isomorphically to $X$, we denote the lift by $C$. Then $C$ is a movable curve on $X$, and $-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C=-(K_{X^{\prime }}+\unicode[STIX]{x1D6E5}^{\prime })\cdot C^{\prime }=-(K_{F}+\unicode[STIX]{x1D6E5}_{F})\cdot C^{\prime }\leqslant -K_{F}\cdot C^{\prime }=(-K_{F})\cdot (-NK_{F})^{d-1}=N^{d-1}(-K_{F})^{d}\leqslant N^{d-1}\unicode[STIX]{x1D706}$. Set $G:=\unicode[STIX]{x1D706}N^{d-1}$ and we are done.◻
Proof of Theorem 1.9.
The first part of the theorem follows either from [Reference Araujo1, Theorem 1.1] or [Reference Lehmann17, Theorem 1.3].
Next we reduce the problem to the $\mathbb{Q}$-factorial case. Since $(X,\unicode[STIX]{x1D6E5}\geqslant 0)$ is KLT, there exists a small birational morphism $f:Y\rightarrow X$ such that $K_{Y}+\unicode[STIX]{x1D6E5}_{Y}=f^{\ast }(K_{X}+\unicode[STIX]{x1D6E5})$, and $(Y,\unicode[STIX]{x1D6E5}_{Y}\geqslant 0)$ is a $\mathbb{Q}$-factorial terminal pair. Assume that the finiteness of coextremal rays is known on $\mathbb{Q}$-factorial KLT pairs. Now $K_{Y}+\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H$ is KLT for $H$ general ample divisor. Write $\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H\equiv A+E$ for some ample $\mathbb{R}$-divisor $A\geqslant 0$ and effective $\mathbb{R}$-Cartier divisor $E$. Then $(Y,\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H+\unicode[STIX]{x1D700}(A+E))$ is KLT for all $0<\unicode[STIX]{x1D700}\ll 1$. Then $(Y,(1-\unicode[STIX]{x1D700})(\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H)+\unicode[STIX]{x1D700}(A+E))$ is KLT. Note that $K_{Y}+(1-\unicode[STIX]{x1D700})(\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H)+\unicode[STIX]{x1D700}(A+E)\equiv K_{Y}+\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H$. Set $\unicode[STIX]{x1D6E5}^{\prime }=(1-\unicode[STIX]{x1D700})(\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H)+\unicode[STIX]{x1D700}E$. Then $(Y,\unicode[STIX]{x1D6E5}^{\prime })$ is KLT and $K_{Y}+\unicode[STIX]{x1D6E5}^{\prime }+\unicode[STIX]{x1D700}A\equiv K_{Y}+\unicode[STIX]{x1D6E5}_{Y}+f^{\ast }H=f^{\ast }(K_{X}+\unicode[STIX]{x1D6E5}+H)$. Therefore, by assumption we have
Pushing forward these cones by $f_{\ast }$ we get the finiteness result on $X$. Therefore, replacing $X$ by $Y$ we may assume that $X$ is a $\mathbb{Q}$-factorial KLT pair. Let $\unicode[STIX]{x1D6F4}$ be the set of all $(K_{X}+\unicode[STIX]{x1D6E5})$-negative movable curves classes $[C_{i}]$ as in Part $(1)$. Let $\unicode[STIX]{x1D6F4}_{H}\subseteq \unicode[STIX]{x1D6F4}$ be the set consisting of the classes $[C]\in \unicode[STIX]{x1D6F4}$ such that $(K_{X}+\unicode[STIX]{x1D6E5}+H)\cdot C<0$. Then by [Reference Araujo1, Theorem 1.1]
We show that the set of rays $\{\mathbb{R}_{{\geqslant}0}[C]:[C]\in \unicode[STIX]{x1D6F4}_{H}\}$ is finite.
Let $\unicode[STIX]{x1D700}>0$ be the minimum log discrepancy of $(X,\unicode[STIX]{x1D6E5})$. Then $(X,\unicode[STIX]{x1D6E5})$ is $\unicode[STIX]{x1D700}$-log canonical. From the statement of [Reference Araujo1, Theorem 1.1] and Proposition 7.1 we see that the movable curves $C$ in $\unicode[STIX]{x1D6F4}_{H}$ satisfy the conclusion of the Proposition 7.1. In particular, $0<-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant G$ for all $[C]\in \sum _{H}$. We also have $(K_{X}+\unicode[STIX]{x1D6E5}+\unicode[STIX]{x1D716}H)\cdot C<0$. Therefore, $\unicode[STIX]{x1D716}H\cdot C\leqslant G$ for all $[C]\in \unicode[STIX]{x1D6F4}_{H}$. In particular, the curves corresponding to the classes $\{\mathbb{R}_{{\geqslant}0}[C]:[C]\in \unicode[STIX]{x1D6F4}_{H}\}$ belong a bounded family, and hence they correspond to only finitely many different numerical equivalence classes.◻
Acknowledgments
This paper originated in a conversation with Professor Burt Totaro. I would like to thank him for our fruitful discussions. I am also grateful to him for answering my questions, reading an early draft and giving valuable suggestion to improve the presentation of the paper. My sincerest gratitude goes to Professor Christopher Hacon for answering several questions, carefully reading some parts of an early draft and point out few errors. I would also like to thank Hiromu Tanaka for suggesting a quicker proof of the Theorem 3.1. I would like to thank Joe Waldron for lot of useful discussions and the referee(s) for pointing out typos and giving valuable suggestions.