No CrossRef data available.
Article contents
On the Measurement of Material Creep Parameters by Nanoindentation
Published online by Cambridge University Press: 01 February 2011
Abstract
Previous studies of how material creep parameters can be measured by nanoindentation testing have focused mostly on measurement of the stress exponent for creep, n, and the activation energy, Qc. However, a more complete characterization requires that the material constant A in the uniaxial creep equation εu =Aσn (where εu is the uniaxial strain rate and σ is the uniaxial stress) also be evaluated. Here, we begin to address this issue by performing simple nanoindentation creep experiments in amorphous selenium at temperatures above and below the glass transition. At 35°C and above, the material exhibits a simple linear viscous creep behavior that is load history independent. This allows the parameter A to be determined from the indentation load-displacement-time data by means of an analytical solution. To examine the validity of the approach, values of the parameter A measured in nanoindentation tests are compared to independent measurements obtained in uniaxial tension creep experiments.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005