Article contents
In Situ Spectroscopic Approach to Atomic Layer Deposition
Published online by Cambridge University Press: 11 February 2011
Abstract
There is great need for a mechanistic understanding of growth chemistry during atomic layer deposition (ALD) of films for electronic applications. Since commercial ALD reactors are presently not equipped for in situ spectroscopy, we have constructed a model reactor that enables single-pass transmission infrared spectroscopy to be performed in situ on a layer-by-layer basis. We demonstrate the viability of this approach for the study of aluminum oxide growth on silicon surfaces, motivated by alternative gate oxide applications. Thanks to submonolayer dielectric and adsorbate sensitivity, we can quantify oxide thicknesses and hydroxyl areal densities on thermal and chemical SiO2/Si(100) substrates. Methyl formation and hydroxyl consumption upon initial trimethylaluminum (TMA) reaction can also be followed. We verify that in situ grown Al2O3 films are compatible in structure to films grown in a commercial ALD reactor.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 5
- Cited by