Article contents
Effect of Process Variables and Dopants on Characteristics of Electrochemically-Deposited Pedot Films
Published online by Cambridge University Press: 11 February 2011
Abstract
Poly(3,4-ethlyenedioxythiophene), PEDOT, has found wide use in applications such as electrostatic coatings, antistatic layers and electrode materials in electronic devices. Electrochemical deposition of PEDOT is a prominent means of obtaining thin, uniform films. However, the relationship of these films' properties to their morphological structure is still poorly understood. We have prepared PEDOT films by electrochemical oxidation of monomer (3,4-ethylenedioxythiophene), EDOT, under constant current conditions, employing a variety of electrolytes, and processing conditions. We report the effect of using different dopants, deposition time, deposition temperature and current density on the observed conductivity of PEDOT films. Atomic force microscopy studies were carried out to determine the possible effect of the process variables on the resulting film morphology. Also, the effect of residual solvent on the conductivity of the films was studied by thermogravimetric analysis (TGA).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 1
- Cited by