Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-19T11:49:08.405Z Has data issue: false hasContentIssue false

Diffusion-Limited Recombination in Dye-Sensitized TiO2 Solar Cells

Published online by Cambridge University Press:  01 February 2011

Nikos Kopidakis
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Kurt D. Benkstein
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Jao van de Lagemaat
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Arthur J. Frank
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Get access

Abstract

The effect of doping on the electron transport dynamics and recombination kinetics in dye-sensitized solar cells was investigated. A simple electrochemical method was developed to dope TiO2 nanoparticle films with Li. Increasing the doping levels is found to slow electron diffusion. The electron diffusion time exhibits a light intensity dependence at all doping levels consistent with a multiple electron-trapping model involving native and doping-induced traps. Importantly, the diffusion time and recombination lifetime of photocarriers are observed to increase in unison with increased doping. This is the first observation that electron diffusion limits recombination with the redox electrolyte under normal working conditions of the dye cell. A model is presented that accounts for the observation. The implications of this mechanism on cell performance are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Regan, B. and Grätzel, M., Nature 353, 737 (1991).Google Scholar
2. Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A., and Grätzel, M., J. Am. Chem. Soc. 123, 1613 (2001).Google Scholar
3. Wang, P., Zakeeruddin, S. M., Moser, J. E., Nazeeruddin, M. K., Sekiguchi, T., and Grätzel, M., Nature Materials 2, 402 (2003).Google Scholar
4. Zaban, Arie, Meier, Andreas, and Gregg, Brian, J. Phys. Chem. B 101, 7985 (1997).Google Scholar
5. Kopidakis, N., Schiff, E. A., Park, N.-G., van de Lagemaat, J., and Frank, A. J., J. Phys. Chem. B 104, 3930 (2000).Google Scholar
6. Huang, S. Y., Schlichthörl, G., Nozik, A. J., Grätzel, M., and Frank, A. J., J. Phys. Chem. B 101, 2576 (1997).Google Scholar
7. Schlichthörl, G., Huang, S. Y., Sprague, J., and Frank, A. J., J. Phys. Chem. B 101, 8141 (1997).Google Scholar
8. Fisher, A. C., Peter, L. M., Ponomarev, E. A., Walker, A. B., and Wijayantha, K. G. U., J. Phys. Chem. B 104, 949 (2000).Google Scholar
9. Kopidakis, N., Benkstein, K. D., van de Lagemaat, J., and Frank, A. J., J. Phys. Chem. B 107, 11307 (2003).Google Scholar
10. Benkstein, K. D., Kopidakis, N., van de Lagemaat, J., and Frank, A. J., J. Phys. Chem. B 107, 7759 (2003).Google Scholar
11. van de Krol, R., Goossens, Albert, and Meulenkamp, Eric A., J. Electrochem. Soc. 146, 3150 (1999).Google Scholar
12. van de Krol, R., Goossens, Albert, and Meulenkamp, Eric A., J. Appl. Phys. 90, 2235 (2001).Google Scholar
13. Kavan, L., Grätzel, M., Rathousky, J., and Zukal, A., J. Electrochem. Soc. 143, 394 (1996).Google Scholar
14. van de Lagemaat, J. and Frank, A. J., J. Phys. Chem. B 105, 11194 (2001).Google Scholar
15. Silver, M., Pautmeier, L., and Bässler, H., Sol. State Communications 72, 177 (1989).Google Scholar
16. Nelson, Jenny, Haque, Saif A., Klug, David R., and Durrant, James R., Phys. Rev. B 63, 205321 (2001).Google Scholar
17. Schlichthörl, G., Park, N.-G., and Frank, A. J., J. Phys. Chem. B 103, 782 (1999).Google Scholar