Article contents
Diffusion of A Deposited GeSe Film in GaAs using Ion-Beam Mixing
Published online by Cambridge University Press: 25 February 2011
Abstract
Ion-beam mixing and rapid thermal annealing (RTA) techniques are used to form shallow and heavily-doped n+ layers in undoped GaAs. RTA reduces surface degradation and improves crystalline quality compared to lengthy thermal cycles, although furnace annealing producesidentical electrical characteristics. Ion-beam mixing has only a small effect on the diffusion of a deposited GeSe film, because the damage created by implantation is repaired during RTA before significant diffusion occurs. We define a threshold temperature representing the onset of significant electrical activation and/or diffusion, and propose a model relating the annealing, activation, and diffusion temperatures for the GeSe/GaAs system. RBS. SIMS, and electrical measurements show that extremely shallow layers with a sheet resistivity as low as 1480/El can be formed in GaAs by diffusion from a GeSe source. This technique has potential application to the formation of shallow ohmic contacts for GaAs integrated circuits.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1985
References
REFERENCES
- 1
- Cited by