Article contents
Comparison of Structural Properties and Solar Cell Performance of a-Si:H Films Prepared at Various Deposition Rates using 13.56 and 70 MHz PECVD Methods
Published online by Cambridge University Press: 17 March 2011
Abstract
The advantage of using very high frequencies for preparation of a-Si:H materials at high rates (above 5 Å/s) for intrinsic layers (i-layer) of solar cells has been well documented. In an effort to identify film properties which may be related to this superior device performance, a study of the structural, optical and electrical properties of films made at various deposition rates between 1 and 15 Å/s using rf frequencies of 13.56 and 70 MHz has been made. The films were characterized using a number of techniques including small-angle x-ray scattering, infrared absorption spectroscopy, and scanning electron microscopy. For the films made using the 70 MHz frequency, the amount of nanovoids with sizes of < 100Å increases systematically as the deposition rates increases beyond 5 Å/s. Accompanying the increase in void fraction in the films are increases in the hydrogen content and the amount of 2070 cm-1 mode in the infrared absorption spectra. In addition to an increase in the amount of nanovoids in the films as the deposition rate exceeds 5 Å/s, the films made using the 13.56 MHz and high deposition rates have large amounts of SAXS related to scattering features with sizes > 200 Å. This scattering is associated with large bulk density fluctuations and/or enhanced surface roughness. None of the films in the study displayed signs of having columnar-like microstructures. The nanovoids are not related to changes in the solar cells with increasing i-layer deposition rate for both fabrication processes, perhaps due to the relatively small volume fractions of less than 0.2% and/or good void-surface passivation. However, the larger-scale structures detected in the films made using the 13.56 MHz technique could cause poorer performance in cells prepared at high growth rates.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
REFERENCES
- 2
- Cited by