Article contents
Cold Crucible Vitrification of Defense Waste Surrogate and Vitrified Product Characterization
Published online by Cambridge University Press: 21 March 2011
Abstract
In the framework of the contract “Advanced Melter Technology Application to the Defense Waste Processing Facility (DWPF) –Cold Crucible Induction Heated Melter (CCIM)”, vitrification tests with Savannah River Site defense waste surrogate were performed at the SIA Radon facility. Cold crucible melters with inner diameter of 216 mm and 418 mm were used in the testing. Commercially available (USA) frits 200 and 320 were used as glass-forming additives. In three different test campaigns, waste additive mixtures were fed as slurries with ∼60 wt.%, ∼30 wt.%, and 45 wt.% water content. Maximum slurry capacity and glass productivity under steady-state conditions were 35.4 kg/h and 16.2 kg/h, respectively. Specific glass productivity reached up to ∼3000 kg/(m2×day). The average melt process temperature was 1250- 1350 °C. Waste loadings in glass were 45 wt.% in tests 1 and 2 and 50 wt.% in test 3. The glasses produced were found to be homogeneous but contained a magnetite-type phase with the spinel structure due to high iron and manganese content in waste. Spinel was observed in the glassy matrix as individual regular crystals and their aggregates. All the waste uranium entered the vitreous phase. Infra-red spectra consist of strong absorption bands due to bridging Si-O-Si and non-bridging Si-O- bonds, some weak bands due to B-O bonds, and a number of narrow bands due to occurrence of the crystalline phase. The glassy products demonstrate high leach resistance. Normalized release of major glass elements (Na, Li, B, Si) is by 10 to 50 times lower than the values required for repository disposition by EPA.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
REFERENCES
- 9
- Cited by