Article contents
Characteristics and Recovery of SI Surfaces Plasma Etching in CHF3 / C2F6
Published online by Cambridge University Press: 25 February 2011
Abstract
The effects of SiO2 reactive ion etching (RIE) in CHF3 / C2F6 on the surface properties of the underlying Si substrate have been studied by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) techniques. The observed two major modifications are (i) a ∼50nm thick silicon layer which contains carbon and fluorine and (ii) 2∼3nm thick residue layer composed entirely of carbon, fluorine, oxygen and hydrogen on the silicon surface. The thermal behaviors of attributed peaks for C 1s, Si 2p, O 1s and F 1s of residue film have been analyzed after in-situ resistive anneal under ultra high vacuum (UHV) condition. C-F1, C-F2 and C-F3 bonds decompose and form C-CFx (x≤3) bonds above 200°C. Above 400°C, C-CFx bonds also decompose to C-C/H bonds. For recovery of the modified silicon surface, reactive ion etched specimens have been exposed to an oxygen plasma. By XPS analysis, the effect of an O2 plasma treatment has been revealed to be completed within 20min. With an O2 plasma pre-treated, a rapid thermal anneal (RTA) treatment as low as 500°2 is found to be effective for removal of impurities in the silicon.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 2
- Cited by