No CrossRef data available.
Article contents
Carbon Nano-Onion Ultracapacitor Model
Published online by Cambridge University Press: 27 June 2013
Abstract
This paper describes a novel ultracapacitor made from carbon nano-onions. Characterization of the material was performed including measurement of the impedance spectra and cyclic voltammetry. A new ultracapacitor model composed of an LRC circuit and a constant phase element was developed along with a parameter extraction procedure. The model was validated using experimental data and simulation.
Keywords
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1541: Symposium F – Materials for Vehicular and Grid Energy Storage , 2013 , mrss13-1541-f14-12
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. (Springer, 1999).CrossRefGoogle Scholar
Pell, W. G., Conway, B.E., Adams, W.A., and de Oliveira, J., J. of Power Sources
80, p. 134–141 (1999).CrossRefGoogle Scholar
Spyker, R. L. and Nelms, R.M., IEEE Transactions on Aerospace and Electronic Systems.
36, 3,(2000).CrossRefGoogle Scholar
Zubieta, L. and Bonert, R., IEEE Transactions on Industry Applications, 36, 1, 2000.CrossRefGoogle Scholar
Buller, S., Karden, E., Kok, D. and De Doncker, R.W., IEEE Transactions on Industry Applications, 38, 6, (2002).CrossRefGoogle Scholar
Orphanou, A., Yamada, T. and Yang, C.Y., “Modeling carbon nanotube ultracapacitor,” 2010 IEEE Nanotechnology Materials and Devices Conference, Oct 12-15, 2010, Monterey, California, USA.Google Scholar
Miller, J. M., Ultracapacitor Application, (Power and Energy Series 59, IET, 2011).CrossRefGoogle Scholar
Pan, H., Li, J. and Feng, Y. P., Nanoscale Research Letters
5:654–668, (2010).CrossRefGoogle Scholar
Sarac, A. S., Ates, M., and Kilic, B., Int. J. Electrochem. Sci., vol. 3, pp. 777–786, (2008).Google Scholar
Miller, J. R. and Burke, A.F., Electrochem. Soc. Interface, vol. 17, no. 1, pp. 53–57, (2008).Google Scholar
Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P. L., and Simon, P., Nature Nanotechnology, vol. 5, pp. 651–654, (2010).CrossRefGoogle Scholar
Shaijumon, M. M., Ou, F.S., Ci, L., and Ajayan, P.M., Chem. Comm., 2373–2375, (2008).CrossRefGoogle Scholar
Lario-Garcıa, J. and Pallas-Areny, R., Sensors and Actuators
132, 122–128, (2006).CrossRefGoogle Scholar
Ross Macdonald, J., Annals of Biomedical Engineering, Vol. 20, pp. 289–305, (1992)CrossRefGoogle Scholar
Kim, S. H., Choi, W., Lee, K.B.B. and Choi, S.W., IEEE Transaction on Power Electronics, 26, 11, (2011).Google Scholar
Parigi, F., Gao, Y., Gachovska, T., Hudgins, J.L., Patterson, D., and Lu, Y., 2012 IEEE Vehicle Power and Propulsion Conference, Oct. 9-12, 2012, Seoul, Korea. pp. 1107, 1111(2012).CrossRefGoogle Scholar
Streeter, I., Wildgoose, G. G., Shao, L., Compton, R. G.. J. Sensors and Actuators B: Chemical Volume 133, Issue 2, 12 August 2008, Pages 462–466.CrossRefGoogle Scholar
Hinkle, D.E., Wiersma, W. and Jurs, S.G., Applied Statistics for the Behavioral Sciences, 5th (2002).Google Scholar
Zhou, Y. S., Xiong, W., Qian, J. P., M., Mahjouri-Samani, M., Gao, Y., Jiang, L., Lu, Y., J. Laser Appl., Vol. 24, No. 4, July 2012.CrossRefGoogle Scholar
Parigi, F., Gachovska, T., Kim, T., Gao, Y., Patterson, D., Hudgins, J.L., Lu, Y., IASTED Power and Energy Systems, EuroPES 2012, Jun 25-27, 2012, Naples, Italy.Google Scholar