No CrossRef data available.
Article contents
Variational Monte Carlo on a Parallel Architecture: An Application to Graphite
Published online by Cambridge University Press: 10 February 2011
Abstract
We present the parallelization strategy adopted to perform Variational Quantum Monte Carlo calculations on solids on distributed-memory architectures and the issues involved in the development of the parallel programs. Results obtained by the calculation of total electronic energy of graphite using nonlocal pseudopotentials in conjunction with the Variational Monte Carlo approach will be shown.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
1.
Ceperley, D., Chester, G. V., and Kalos, M. H., Phys. Rev. B
16, 3081 (1977). D. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).Google Scholar
6. for a review, see Theory of the Inhomogeneous Electron Gas, ed. by Lundqvist, S. and March, N. H. (Plenum, New York, 1983).Google Scholar
7.
Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., PVM 3 user's guide and reference manual, Oak Ridge National Laboratory (Tennesse, USA, 1994).Google Scholar
8.
Umrigar, C. J., Nightingale, M. P., and Runge, K. J., J. Chem. Phys.
99, 2865 (1993).Google Scholar
9.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., J. Chem. Phys.
21, 1087 (1953).Google Scholar
11.
Chelikowski, J. R. and Louie, S. G., Phys. Rev. B
29, 3470 (1984); C. T. Chan, D. Vanderbilt, and S. G. Louie, 33, 2455 (1986).Google Scholar
13.
Dongarra, Jack, Geist, G. A., Manchek, Robert, and Sunderam, V. S., Computers in Physics
7, 166 (1993).Google Scholar
14.
Umrigar, C. J., Wilson, K. G. and Wilkins, J.W., Phys. Rev. Lett.
60, 1719 (1988).Google Scholar
19.
Rajagopal, G., Needs, R. J., Kenny, S., Foulkes, W. M. C., James, A., Wang, Y., and Chou, M. Y., Bull. Am. Phys. Soc.
39, 619 (1994).Google Scholar