No CrossRef data available.
Article contents
Schottky Barrier Heights of PT Silicides on SiGe
Published online by Cambridge University Press: 03 September 2012
Abstract
Silicide/SiGe Schottky barriers are of importance for applications in infrared detectors and SiGe contacts, as well as for fundamental studies of metal-semiconductor interfaces. We have fabricated silicide/SiGe Schottky diodes by the reaction of evaporated Pt and Ir films on p-SiGe alloys with a thin Si capping layer. The onset of metal-SiGe reactions was controlled by the deposited metal thickness. The Schottky barrier heights were determined from internal photoemission. Pt-SiGe and Ir-SiGe reacted diodes have barrier heights that are higher than the corresponding silicide/p-Si diodes. PtSi/Si/SiGe diodes, on the other hand, have lower “barrier heights” that decrease with increasing Ge concentration. The smaller barrier heights in such silicide/Si/SiGe diodes are due to tunneling through the unconsumed Si layer. Equations are derived accounting for this tunneling contribution, and lead to an extracted “barrier height” that is the Si barrier height reduced by the Si/SiGe band offset. Highly bias-tunable barrier heights are obtained (e.g. 0.30 eV to 0.12 eV) by allowing the SiGe/Si band offset to extend higher in energy than the Schottky barrier, leading to a cut-off-wavelength-tunable silicide/SiGe/Si Schottky diode infrared detector.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994